
Santos, Segundo & Telvina / Journal on Computational Thinking V.2, N.1 (2018)

51

A Tool for Assisted Correction of Programming Exercises in Java

Based in Computational Reflection

Original Title: Uma Ferramenta para Correção Assistida de Exercícios de Programação

em Java Baseada em Reflexão Computacional

Francisco A. O. Santos
1
, Plácido S. das C. Segundo

1
, Mardoqueu S. Telvina

2

1 Instituto Federal de Educação do Maranhão – IFMA, MA – Brasil
2 Faculdade de Educação São Francisco, MA – Brasil

ARTICLE INFO

Article history:
Received 18 March 2018
Accepted 25 October 2018
Available online July 1st 2018

Keywords:
Automatic Assessment,
Programming Exercises
Java

ISSN: 2595-9077

DOI:JCThink.2018.V2.N1.p.51

ABSTRACT

INTRODUCTION: This work reports on the creation and use of a tool to verify

compliance in java programming exercises. The solution is based on the hypothesis

that computational reflection can provide a way to automatically assess the

programing competences of students. The work reflects the concern to make students

learning a programming language have practical activities in parallel to what they

learn in theoretical classes. OBJECTIVE: Attesting the effectiveness of using

computational reflection to automatically correct programming exercises. Provide

the teacher with a tool to support the follow-up of practical activities. Provide

students with immediate feedback on their learning, so as to encourage them to

behave more autonomously. METHOD: A case study was carried out with two

classes of a computer science course. They answered five practical programming

exercises and their responses for each activity were collected in source code format,

which were used as the basis of solutions, totaling 100 responses. A comparative

analysis was made between the scores obtained through CodeTeacher and the scores

assigned by a group of teachers. RESULTS: Comparing the evaluation in

CodeTeacher and the scores assigned by teachers, the average between the pairs of

evaluations was lower than the confidence level of significance established in three

groups, which demonstrates that the automatic correction obtained an acceptable

accuracy. CONCLUSION: The use of computational reflection techniques for

assisted correction in programming classes can bring beneficial result. Teachers can

optimize their work and have performance reports of their students. Students can also

be benefited by having an immediate feedback, so they can perceive themselves

capable of achieving the learning objectives defined by the teacher.

1. Introduction

Practical exercises are essential to the development of computational thinking. In

programming classes, learning to code requires related knowledge, such as: notions of

logic, programming techniques, correct use of syntax and resources of a programming

language, and application of best practices in software development, among others. The

evaluation of these issues requires a thorough analysis by the teacher, since it is

necessary to review the code produced by the students to assess the knowledge

acquired, usually materialized in the form of practical works [Prior 2003]. Due to the

amount of details to be observed, individual monitoring is necessary for a more accurate

learning [Tobar et al., 2001].

However, evaluating the student's knowledge from code analysis constitutes a

challenge for programming teaching, especially when the classes are extensive and the

number of classes per teacher too - a common reality in programming courses [Oliveira

et al. 2015]. According to França et al. (2011), technical programming disciplines are

extensive in Computing and Engineering courses. This reality ends up hampering, if not

hindering, the evaluation capacity of the teacher, given the large volume of work to be

corrected and the time restrictions for correction and delivery of scores [Nunes 2004],

besides being a repetitive, laborious activity that little adds to the teacher. Because it

causes an overload of activities to the teacher, such factors tend to affect the quality of

assessments.

Santos, Segundo & Telvina / Journal on Computational Thinking V.2, N.1 (2018)

52

 According to França et al. (2011) this difficulty can lead to discouragement,

sometimes impelling the class to dispersion. Given this difficulty, alternatives to

optimize this process have arisen through the automation and execution of source code

tests [Hollingsworth 1960, Ebrahimi 1994]. The attempt to replace the visual analysis

and manual execution of programs brought to light tools of assisted correction of

programming works. Peterson et al. (2015) consider the use of software metrics based

on the student code a revolutionary strategy for teaching. However, although there has

been a considerable evolution of these systems [Romli et al. 2010], according to

Oliveira et al. (2015), there are still considerable shortcomings with regard to the

effectiveness of these tools, especially in assessing whether the desired educational

objectives have been achieved. For Ihantola et al. (2010), these systems need to evolve

in the sense of providing greater direction from a pedagogical perspective.

 The main objective of tis paper is attesting the effectiveness of using

computational reflection to automatically correct programming exercises, to fulfill this

purpose, this article presents a case study for an automatic source code analysis and

evaluation tool, as an alternative for optimizing the teaching-learning of programming

process. The tool chosen for this purpose is CodeTeacher [Santos et al. 2017], a

software for automatic analysis and evaluation of source code. In order to assist the

assessment of programming exercises made with the Java language, the tool enables

automatic evaluation of Java classes, as well as support for the assignment of scores to

the evaluated activities. In addition, it generates reports of the executed tests and assigns

scores to the tested classes.

 The main contribution of this work is to promote discussion in the educational

computing community about teaching and learning programming and propose a solution

to find new approaches for this challenge. In presenting evidence of using

computational reflection as a key mechanism for evaluating novice students

performance in programming, we believe to be encouraging the development of

technologies that may be an auxiliary work tool to understand students' learning

difficulties and guide decision making of teachers in the choice of teaching actions to

improve learning, thus contributing to the progress of computational thinking.

 The text is organized as follows: Section 2 lists the objectives of this work. In

Section 3, we present the theoretical background needed to understand the mecanism,

bringing related works and similar solutions. In Section 4, we present the CodeTeacher

and describe the types of analysis that compose it. In Section 5, we explain the

operation of the tool. Section 6 provides a case study to ascertain the viability of the

tool. And finally, in Section 7, we conclude with the final considerations and future

work.

2. Theoretical Reference

This section introduces the basic concepts, methods, strategies, tools and techniques

already used for assessment of student programming competences. It also discusses the

related works and its results.

2.1. Automatic Evaluation Approaches
According to Ala-Mutka (2005), the most used techniques for automatic correction of

programs are static and dynamic analysis. Static analysis is an approach to automatic

assessment of programming learning based on source code analysis. Through static

analysis, it is possible to analyze effort, complexity, efficiency and quality of

programming [Curtis et al. 1979b, Berry and Meekings 1985, Rahman et al. 2008].

Dynamic evaluation is an evaluation based on the correct and efficient execution of

Santos, Segundo & Telvina / Journal on Computational Thinking V.2, N.1 (2018)

53

programs. Oliveira et al. (2015), introduces the dynamic-static analysis for automatic

assessment of source code.

 Naude et al. (2010) propose a method for evaluating programs using graph

similarities. The programs developed by students are normalized in abstract syntatic

trees and the scores are assigned by linear regression based in previous solutions. The

results indicated a high similarity of scores assigned by teacher in comparison with

those obtained automatically, but only when the student get higher scores.

 Oliveira et al. (2016) report an approach that combines Principal Component

Analysis (PCA) algorithyms and clustering techniques to recognize examples of

solutions in responses developed by students. The experiments led to a rubric scheme

that requires a little assessment effort by teachers.

 Benford et al. (1995) and Vujosevic-Janicic et al. (2013), published strategies

combining testing techniques, analysis and prediction. The results of both works are

very promising.

 Estey and Coady (2016) presented BitFit, a submission tool for activities from

which a predictive model was built based on classification binary to identify the

probability of a student being failed.

 Otero et al. (2016) proposed a set of software metrics based on the static analysis

of student codes. The study verified that the metrics have a correlation with students'

grades.

2.2. Similar Solutions
Among the many tools to support the practice of programming with the purposes of

submission, execution and evaluation of exercises, we highlight ProgTest [De Souza et

al. 2011], PCodigo [Oliveira et al. 2015], BOCA [Campos and Ferreira 2004, França et

al. 2011] and MOJO [Chaves 2013].

ProgTest is an automated support system for evaluating submissions of

programs written in Java. Along with the programs are also submitted their respective

test cases. ProgTest compiles the student programs and submits them to the tests.

PCodigo is a complement to the Virtual Learning Environment (VLE) Moodle

[Moodle 2011] for mass execution and program analysis, developed in C language, but

it is applicable to different programming languages. Integrated with Moodle, it receives

solutions from programming activities submitted by students, executes them and issues

evaluation reports for teachers.

BOCA Online Contest Administrator is an internet system for exercise

submission and online code correction. It is the current platform used in programming

competitions promoted by the Brazilian Computer Society (SBC).

MOJO is a tool that integrates the concept of Online Judges (OJ) [Kurnia et al.

2001] to Moodle. It consists of a module that aims to assist the teacher in the process of

preparing, submitting and correcting programming questions.

The differential of CodeTeacher in relation to existing solutions, besides being

focused on Java, is that it consists in giving more flexibility to the evaluation of the

teacher, allowing a more holistic analysis. In addition to guiding evaluation through a

pedagogical perspective [Ihantola et al. 2010]. It also has the characteristic of being

extensible, that is, its modular architecture favors the inclusion of new features.

Consequently, with the possibility of providing immediate feedback to the

student, the tool has the potential to get more involved in this, since the students'

awareness of their situation tends to cause a reaction towards better results. In addition

to enabling greater transparency, making the evaluation process visual, exposing the

results and reporting to all those interested in learning.

Santos, Segundo & Telvina / Journal on Computational Thinking V.2, N.1 (2018)

54

 For the teacher, there is also the possibility of perceiving the deficiencies of a

class through the identification of recurrent errors in the same evaluation, as well as the

possibility of a closer monitoring of the progress of the discipline, with greater clarity

about the individual and collective income of the class.

3. CodeTeacher

CodeTeacher is a platform-independent desktop application based on static, dynamic

and static dynamic analysis [Oliveira 2015]. It is a system for source code analysis by

the configuration of pre-defined evaluation criteria. The application was made to accept

projects in Java, regardless of the development IDE used, since it only needs that

compiled classes (files with a .class extension) to be submitted to the tool.

 CodeTeacher proposes to help teachers and students in the evaluation of

programming exercises. To fulfill this purpose, some requirements were defined. These

goals are listed as follows:

• Providing the teacher with a tool to support the follow-up of practical activities;

• Giving flexibility to the evaluation of the teacher, allowing a holistic analysis.

• Guiding evaluation through a pedagogical perspective.

• Being extensible.

• Providing programming students with immediate feedback about their learning,

so as to encourage them to behave more autonomously.

 For automatic detection of nonconformities in code from the definition of

criteria available to the teacher, it is used the reflection programming or

metaprogramming [Horstmann 2000]. This paradigm provides the ability of a computer

system to access information about itself to examine its structure, state, and

representation, and to be able to self-modify its behavior at runtime. This functionality

is provided by some programming languages, including Java.
 The strategy adopted to evaluate the classes without changing the code developed

by the students was to intercept the creation of objects and the invocation of methods on the

test target class, verifying the occurrence of nonconformities and checking the return after

its execution.

 The current focus of using CodeTeacher concerns initial and intermediate

programming disciplines. It is also important to note that the tool only covers practical

coding works in Java, not embracing textual analysis of responses to exercises and

subjective questions.

 Four types of evaluation are possible, named as follows: structural analysis,

behavioral analysis, standard export analysis and conceptual analysis. The following are

the types of CodeTeacher analysis.

3.1. Structural Analysis
In this type of analysis, the static elements of the code are verified, such as the correct

declaration of the attributes and methods of a class, and its modifiers can also be

checked, as well as whether a given member is a class or instance.

 Another possibility is the analysis of the use of inheritance through navigation

by the hierarchy of classes implemented by the student. Similarly, this analysis allows

us to verify whether or not a particular class implements a given interface. It is also

possible to make the analysis more flexible considering only some elements in the

evaluation. For example, it is possible to configure a criterion that evaluates whether

there is a method in the defined scope that returns data and / or receives parameters of

certain types, and does not need to enter the name of the method to be searched for.

Santos, Segundo & Telvina / Journal on Computational Thinking V.2, N.1 (2018)

55

 In order to make the student's implementation more flexible, without, however,

harming the effectiveness of the evaluation, it is possible to use regular expressions,

using wildcards in the specification of criteria. It is possible, for example, define that

there must be a method whose name starts with a prefix such as "register ...". For this,

the teacher would only need to enter the following expression in the method name:

"register.*", where the asterisk (*) would mean any string. Similarly, it would be

possible to verify the existence of a method with the suffix "?data", with the question

mark corresponding to any character. Table 1 shows the predefined types of common

errors in structural analysis.

Error Description

CLASS_NOT_FOUND A required class is not in the project

PARAM_CLASS_NOT_FOUND Some class that is used as parameter is not in the project

SUPERCLASS_NOT_FOUND A specified extended superclass is not found in the project

METHOD_NOT_FOUND A method specified in the criteria is not declared in the

class

FIELD_NOT_FOUND A field specified in the criteria is not declared in the class

CONSTRUCTOR_NOT_FOUND A specified constructor is not present in the class

INTERFACE_NOT_IMPLEMENTED A class should implement some interface

BIN_NOT_FOUND The source folder with the compiled classes was not found

FOLDER_NOT_FOUND The project folder is not in the specified directory

METHOD_NOT_ABSTRACT A method should be declared as abstract

METHOD_NOT_FINAL A method should be declared as final

METHOD_NOT_FOUND A specified method should be declared

METHOD_NOT_PRIVATE A method should be declared with the private modifier

METHOD_NOT_PUBLIC A method should be declared with the public modifier

METHOD_NOT_STATIC A method should be declared with the static modifier

METHOD_NOT_PROTECTED A method should be declared with the protected modifier

METHOD_MODIFIER_MISMATCH The method modifiers declared mismatches the criteria

METHOD_NOT_RETURN The method return is not the same specified in the criteria

Table 1. Types of structural error.

3.2. Behavioral Analysis
For Ala-Mutka (2005) and Rahman et al. (2008), fairness and functionality are

important evaluation items. The behavioral analysis consists of attesting the correctness

of the code from its functional testing in order to simulate the behavior of the program

in a real environment or scenario. It is an analysis based on input / output that tests the

services provided by an object, that is, verify the correct output of a program from

inputs previously provided and compared with predicted results. The code is executed

and the responses of the object to external stimuli are checked, so messages are passed

to an object in order to find an expected response. The teacher models a set of cases to

be evaluated and submits them to the evaluation of the tool and, through the

combination of the provided inputs and the expected outputs, it is possible to infer the

quality of the program with respect to its functionalities, to the requirements specified

by the teacher.

 An example of using this approach may be checking the values returned from

invocation of methods by passing a list of pre-established parameters and defining the

expected values that should be returned. It works like black-box tests, when values are

entered and specific outcomes are expected, depending on the test case. No intervention

in the implementation of the solution is made, the code is tested based only in its

outcomes.

3.3. Standard Output Analysis

Santos, Segundo & Telvina / Journal on Computational Thinking V.2, N.1 (2018)

56

In this type of analysis it is verified if the executed code performs the printing of some

text in the standard output of the system (console). It is common in early programming

disciplines to create programs that write data or messages to standard output. They are

usually data resulting from calculations made by the application or even informational

messages. Typically this information is presented in a textual way in a command line

interface. The tool captures the standard output, interrupting the print flow and diverting

it to a proxy that stores the printed content, and then checks whether what is printed by

the student program is equivalent to the text defined in the evaluation criteria set by the

teacher. It must inform the content to be printed in order for the equality comparison to

be made and, in this case, the exact match between the terms compared is considered

success.

3.4. Conceptual analysis
In this type of analysis, standards and metrics can be defined to be contemplated. This

mechanism allows the evaluation of the application of Object Oriented Programming

(OOP) concepts such as inheritance, polymorphism, degree of encapsulation, among

others [Horstmann 2000]. In this way, it is possible to find out if there are abstract

classes that are not extended or interfaces not implemented, for example. The use of

polymorphism can be identified and evaluated considering, for example, the presence of

overloaded and / or overwritten methods. Such factors can be framed in a gradation

scale defined by the teacher. As an example, the level of encapsulation can be measured

by configuring a minimum percentage of encapsulated members to be achieved.

 Although not yet available in CodeTeacher, other concepts and metrics can be

used in this type of analysis, such as degree of cohesion and coupling, as new metrics

and concepts from Software Engineering can be added to the tool in addition to

functionality, with the inclusion of plug-ins.

4. Evaluation Steps

All the details involving the total evaluation process are detailed in the following topics.

The flow of activities is shown in Figure 1.

Figure 1. Evaluation process

 Figure 2 shows the first screen of the application, with all the options available.

The sessions, menus and buttons are presented bellow.

Selectiong the

artifacts

Configuring

criteria
Running tests Performance

Report

Santos, Segundo & Telvina / Journal on Computational Thinking V.2, N.1 (2018)

57

Figure 2. Application home

4.1. Selecting artifacts
This step indicates which elements will be chosen for evaluation. Assets are explicitly

selected by the user, firstly by indicating which directories should be accessed to look

for the code artifacts to be analyzed, being it possible to be, projects, classes, or class

packages. This indication determines the scope of the assessment. The convention used

by CodeTeacher to associate a particular set of code artifacts with a particular student is

that all files contained in a folder belong to the same student. Therefore, it is

recommended that there be a folder with the name of each student, because the name of

the folder will serve as reference to identify the student.

4.2. Setting Criteria
Once the software elements have been selected, the items that will compose the

evaluation are then created. Thus, a set of criteria must be informed by the teacher to be

applied during the analysis. The criteria are defined using the graphical interface, where

the evaluative items considered are indicated. The format of the criteria varies according

to the type of analysis, but each criterion must have a value to compose the student's

grade. The assessment of the criteria is established as weights are assigned according to

the degree of importance considered by the evaluator. It is at this moment that the

teacher feeds the system with his previous judgment of the expected competences of the

student with the accomplishment of the practical activity in question, in the sense of

reaching the established learning objectives.

 Once the criteria have been created, it is possible to save them in a file for later

use or editing, thus preventing the work of setting up all the criteria from being repeated

in case of a later evaluation. Figure 3 shows the criteria configuration, note that the field

name as “value” is the number of scores of the criteria.

Santos, Segundo & Telvina / Journal on Computational Thinking V.2, N.1 (2018)

58

 Figure 3. Criteria configuration

4.3. Running tests
The implementation strategy is defined by the teacher, in order to make the evaluation

process flexible. The performance of the tests can be in mass or class to class, and can

be changed later, so that it is possible to apply differentiated evaluations and focus on

certain aspects, at the discretion of the teacher. Students' grades are calculated according

to the total number of points obtained through the sum of all the criteria. It is considered

that, before the start of the execution, each student has all points, but as irregularities are

found in his code, the points corresponding to the criteria not met are debited from the

total points of the student. Finally, the final grade is counted based on the student's

percentage of correct answers. Figure 4 shows how the results are reported.

 Figure 4. Execution of tests

Santos, Segundo & Telvina / Journal on Computational Thinking V.2, N.1 (2018)

59

4.4. Performance report
After the completion of all the tests, comes the scores prediction phase. The results are

tabulated and a performance report is generated showing the grades of the students in

the class. Initially the report is presented in its summary form, containing a summary of

the scores, with statistical information such as class average and standard deviation.

However, it is possible to analyze individual performance by obtaining a detailed result

of each student. Other visualization options are also available, such as an extract of the

most committed types of errors, percentage of correctness, rate of recovery, among

others. With this complementary information it is possible to identify generalized

difficulties in the class and to plan strategies to remedy such deficiencies.

 At this stage, there is also an option to export the resulting data to a spreadsheet,

if it is necessary to manipulate such data for graphing, for example, or even to report to

students about their performance. The generation of the file also serves as documentary

evidence to indicate the evolution of the class in the course of the discipline taught.

Figure 5 shows an individual performance summary.

Figure 5. Individual performance summary

5. Case Study

A case study was performed to prove the effectiveness of CodeTeacher as a learning

object. A comparative analysis was made between the grades obtained by CodeTeacher

and the grades assigned by teachers from an actual school. A sample of responses to

programming exercises questions from a regular group of computer science course

students was selected to compose the test set. Four practical programming activities (A,

B, C and D) were selected to compose the corpus of the experiment. For each activity,

responses were collected in source code format, which were used as the basis of

solutions, totaling 100 responses.

 The responses were submitted to structural, behavioral, output and conceptual

analysis, respectively. The final grade was the arithmetic mean among these scores. For

each analysis, evaluative criteria were elaborated as model responses, which took into

account aspects considered relevant in a student beginning programming, involving the

basic use of the main Java elements, such as language syntax, procedural aspects and

basic guiding resources to objects. The values of the criteria were assigned individually

and arbitrarily by tree teachers. If there were divergences in the value attributions of

each teacher, they were confronted and underwent a review process where the two

discussed until reaching a consensus.

 Subsequently, the answers were evaluated manually by the same tree teachers,

who assigned grades on a scale 0-10. Each teacher received a checklist with the

evaluative items identical to the criteria defined in the application. The teachers

deliberately indicated each item as "Complied" or "Not complied" and the calculation of

the grade was obtained from the percentage of complied items. This set of exercises

Santos, Segundo & Telvina / Journal on Computational Thinking V.2, N.1 (2018)

60

already evaluated composes the basis of comparison of the experiment. In this

experiment we have two factors, the grade and the evaluators, and we hope that there is

no significant effect of evaluators.

 In order to investigate the influence of the evaluation method on the variation of

the grades assigned, the One-way Analysis of Variance (ANOVA) [Rumsey, 2016] was

adopted. The ANOVA is a statistical technique for analyzing data by comparing the

means of subsets of the data, the data is sub-divided into groups based on a single

classification factor. The dependent categorical variable considered was the evaluation

author (the human teachers evaluation - named by their initials as EP, GA and PS - and

the CodeTeacher evaluation - named as CT). The four evaluations were compared, and

the goal was to verify the difference of grades with the control, CodeTeacher being the

reference.

 In order to identify the groups in which the difference was significant, the

Tukey’s test [Rumsey, 2016] was performed. Tukey's test is a statistical method that

compares all possible pairs of means to find means that are significantly different from

each other. The results were compared according to their categories, that is, the

evaluator responsible for each evaluation.

 To determine whether any of the differences between the means are statistically

significant, a significance level (denoted as α or alpha) of 0.05 was adopted. That

indicates a 5% risk of concluding that a difference exists when there is no actual

difference. To assess the hypothesis that the population means are all equal, we compare

the p-value to our significance level. The p-value is the smallest familywise significance

level at which a particular comparison will be declared statistically significant.

• P-value ≤ α: The differences between some of the means are statistically

significant

• P-value > α: The differences between the means are not statistically significant

Group Diff Lower Upper P-Value

EP-CT 1,53 1,68 9,38 0,67

GA-CT 1,57 1,71 9,42 0,92

PS-CT 1,02 1,17 8,73 0,09

GA-EP 3,58 1,84 9,12 0,22

PS-EP 5,11 3,63 6,60 0,00

PS-GA 5,47 3,98 6,96 0,00

Table 2. Exercise A.

 In Table 2, the p-values for the comparisons with CT are greater than the

significance level, wich confirms the hypothesis and conclude that all of population

means are equal. Considering only the p-value of the pairs of means wich evaluations

were made by human teachers, it is possible to see that all the means are less than the

confidence level adopted (p-value < 0,05), except in the GA-EP means comparison. So,

we can say that the means of the sample group (GA - EP) are sigificantly equivalent.

Group Diff Lower Upper P-Value

EP-CT 3,17 4,68 8,91 0,01

GA-CT 2,79 3,39 8,62 0,03

PS-CT 2,44 4,41 9,34 0,08

GA-EP 3,62 3,58 4,81 0,04

PS-EP 2,41 3,38 7,16 0,07

PS-GA 1,04 5,08 9,85 0,81

Table 3. Exercise B.

 According to Table 3, it is possible to say that there is at least two evaluators

with evaluations significantly diferente from CT, for the p-value is lower than the

Santos, Segundo & Telvina / Journal on Computational Thinking V.2, N.1 (2018)

61

confidence level. One can see that only the confidence interval for GA-EP is greater

than 0,05. Thus, it appears that EP and GA do not differ among themselves, but are

different from CT.

Group Diff Lower Upper P-Value

EP-CT 2,44 3,58 8,49 0,01

GA-CT 2,44 3,58 8,49 0,01

PS-CT 2,53 1,04 9,31 0,03

GA-EP 4,93 3,58 8,74 0,01

PS-EP 2,54 1,04 9,24 0,02

PS-GA 2,54 1,04 9,23 0,02

Table 4. Exercise C.

 Analyzing the results of Table 4, it was possible to see that the p-value is lower

than 0,05, which means that the ANOVA p-value for each evaluation is highly

significant, indicating the difference between them. From this, we concluded that the

average performance of the students are significantly different. Also in the table we see

that the differences between the means of the teachers are statistically significant too.

Group Diff Lower Upper P-Value

EP-CT 0,86 0,98 9,89 0,08

GA-CT 0,92 6,05 10,00 0,09

PS-CT 0,00 6,76 9,67 0,33

GA-EP 0,85 4,05 9,74 0,34

PS-EP 0,86 4,98 9,83 0,33

PS-GA 0,09 4,72 10,00 0,09

Table 5. Exercise D.

 In Table 5, comparing the evaluation scores, the average between the pairs of

evaluations is greater than the confidence level of significance established in three

groups. This leads us to conclude that the average performance of students (GA-CT),

(PS-CT) and (PS-GA) are significantly equivalent.

 Thus, it is concluded that the average performance of the students was

significantly equivalent in tree of the analyzed evaluation, since the ANOVA was

significant and the Tukey test demonstrated that all evaluations do not differ, with the

exception of the comparison of exercise C. It demonstrates the feasibility of using the

tool with a considerable degree of assertiveness. Some aspects were also observed on

the results, such as: the evaluations were more homogeneous in exercise D. This

similarity also increased when the grades were closer to 10,0.

6. Conclusions

CodeTeacher, a proposal of automated aid to the teaching of programming focused on

the increase of teacher productivity was presented. In order to give a greater dynamism

to the educational process through the systematic use of the tool, it is expected to reduce

the time to correct the work, thus leaving the teacher free to dedicate himself to other

teaching practices, such as elaboration of activities, planning of classes and preparation

of didactic material, besides accompaniment of students.

 A study case was conducted to evaluate the performance among students and

teachers. The evaluation was done through the use of the tool to obtain the data related

to its use. In order to identify if the evaluation method (automated or manual) factor

exerts some influence on the students performance evaluation, a difference test among

population means was applied for paired data from the same population. The results

showed that, when compared to human evaluation, CodeTeacher achieved similar

outcomes, since the difference was considered insignificant in most of the tests.

Santos, Segundo & Telvina / Journal on Computational Thinking V.2, N.1 (2018)

62

 As future work, we intend to develop a web interface to deploy the application

as an online service available on the web, as well as its integration with mobile

platforms, and the development of complementary functionalities that can bring value to

the tool, such as the ability to detect plagiarisms. There is also the possibility of

attaching the tool to an VLE (Virtual Learning Environment) such as Moodle.

References

Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for

programming assignments. Computer Science Education, 15(2):83–102.

Benford, S. D., Burke, E. K., Foxley, E., and Higgins, C. A. (1995). The Ceilidh system

for the automatic grading of students on programming courses. In Proceedings of the

33rd annual on Southeast regional conference, ACM-SE 33, pages 176–182, New

York, NY, USA. ACM.

Berry, R. E. and Meekings, B. A. (1985). A style analysis of c programs.

Communications of the ACM, 28(1):80–88.

Chaves, José Osvaldo M., Castro, Angélica F., Lima, Rommel W., Lima, Marcos

Vinicius A., Ferreira , Karl H. A. (2013). MOJO: Uma Ferramenta de Auxílio à

Elaboração, Submissão e Correção de Atividades em Disciplinas de Programação. In

XXI Workshop de Educação em Computação (WEI) - SBC 2013, Maceió, AL.

Campos, C. and Ferreira, C. (2004). Boca: um sistema de apoio para competições de

programação. In XII Workshop de Educação em Computação (WEI) - SBC 2004,

Salvador, BA.

Curtis, B., Sheppard, S. B., and Milliman, P. (1979a). Third time charm: Stronger

prediction of programmer performance by software complexity metrics. In

Proceedings of the 4th International Conference on Software Engineering, ICSE ’79,

pages 356–360, Piscataway, NJ, USA. IEEE Press.

Oliveira, M. G., Oliveira, E., Abordagens, Práticas e Desafios da Avaliação Automática

de Exercícios de Programação. In: 4o. DesafIE - Workshop de Desafios da

Computação Aplicada à Educação, 2015, Recife, PE. Anais do 4o. DesafIE, 2015. p.

1-10.

Oliveira, M. G., Ciarelli, P. M., and Oliveira, E., (2013). Recommendation of

programming activities by multi-label classification for a formative assessment of

students. Expert Systems with Applications, 40(16):6641–6651.

Oliveira, M., Nogueira, Araújo, M., and Oliveira, E. (2015). Sistema de apoio à prática

assistida de programação por execução em massa e análise de programas. In CSBC

015-Workshop de Educação em Informática (WEI), Recife-PE.

De Souza, D., Maldonado, J., and Barbosa, E. (2011). Progtest: An environment for the

submission and evaluation of programming assignments based on testing activities.

In Software Engineering Education and Training (CSEE T), 2011 24th IEEE-CS

Conference on, pages 1 –10.

Estey, A. and Coady, Y. (2016). Can interaction patterns with supplemental study tools

predict outcomes in cs1? Proceedings of the 2016 ACM Conference on Innovation

and Technology in Computer Science Education - ITiCSE ’16, pages 236–241.

Ebrahimi, A. (1994). Novice programmer errors: language constructs and plan

composition. International Journal of Human-Computer Studies, 41(4):457 – 480.

Santos, Segundo & Telvina / Journal on Computational Thinking V.2, N.1 (2018)

63

França, A., Soares, J., Gomes, D., and G.C.Barroso (2011). Um sistema orientado a

serviços para suporte a atividades de laboratório em disciplinas de técnicas de

programação com integração ao ambiente Moodle. RENOTE - Revista Novas

Tecnologias na Educação, 9(1).

Hollingsworth, J. (1960). Automatic graders for programming classes. Commun. ACM,

3(10):528–529.

Horstmann, Cay S; Cornell, Gary. Core Java 2. Vol.1: Fundamentos. Makron Books,

2000.

Ihantola, P., Ahoniemi, T., Karavirta, V., and Seppälä, O. (2010). Review of recent

systems for automatic assessment of programming assignments. In Proceedings of

the 10th Koli Calling International Conference on Computing Education Research,

Koli Calling ’10, pages 86–93, New York, NY, USA. ACM.

Moodle – “A Free, Open Source Course Management System for Online

Learning.”(2011). Disponível em http://moodle.org/. Acesso em 26 ago. 2018.

Naude, K. A., Greyling, J. H., and Vogts, D. (2010). Marking student programs using

graph similarity. Computers & Education, 54(2):545 – 561.

Neves, A., Oliveira, M., França, H., Lopes, M., Reblin, L., and Oliveira, E. (2017a).

Pcodigo ii: O sistema de diagnóstico da aprendizagem de programação por métricas

de software. In Anais dos Workshops do Congresso Brasileiro de Informática na

Educação, volume 6, page 339.

Neves, A., Reblin, L., França, H., Lopes, M., Oliveira, M., and Oliveira, E. (2017b).

Mapeamento automático de perfis de estudantes em métricas de software para análise

de aprendizagem de programação. In Brazilian Symposium on Computers in

Education (Simpósio Brasileiro de Informática na Educação-SBIE), volume 28, page

1337.

Otero, J., Junco, L., Suarez, R., Palacios, A., Couso, I., and Sanchez, L. (2016). Finding

informative code metrics under uncertainty for predicting the pass rate of online

courses. 373:42–56.

Peterson, A., Spacco, J., and Vihavainen, A. (2015). An exploration of error quotient in

multiple contexts. Proceedings of the 15th Koli Calling Conference on Computing

Education Research, pages 77–86.

Prior, J. C. “Online assessment of SQL query formulation skills”. In Proceedings of the

Fifth Australasian Conference on Computing Education. Adelaide, Australia. 2003.

Rahman, K. A., Ahmad, S., Nordin, M. J., and Maklumat, F. T. D. S. (2008). The

Design of an Automated C Programming Assessment Using Pseudo-code

Comparison Technique.

Romli, R., Sulaiman, S., and Zamli, K. (2010). Automatic programming assessment and

test data generation a review on its approaches. In Information Technology (ITSim),

2010 International Symposium in, volume 3, pages 1186 –1192.

Rumsey, Deborah J. Statistics for Dummies. 2 ed. Chichester: John Wiley and Sons Ltd,

2016.

Tobar, C. M. et al. “Uma Arquitetura de Ambiente Colaborativo para o Aprendizado de

Programação”. XII Simpósio Brasileiro de Informática na Educação, Vitória, ES.

2001.

