

A comparison between C and Go implementations of a Traffic

Control System Simulator

Guilherme H. K. Martini1, Jean Marcelo Simão1, João Fabro1

1 Centro de Pós Graduação em Engenharia Elétrica e Informática Industrial (CPGEI)

Universidade Tecnológica Federal do Paraná (UTFPR) – Curitiba, PR - Brasil

ghk.martini@gmail.com, jeansimao@utfpr.edu.br, fabro@utfpr.edu.br

Abstract. This paper presents a comparison between C and Go

implementations of a Traffic Control System Simulator. The analysis focuses

on comparing both languages from a time efficiency standpoint. Also,

implementation complexity, multi-threading capabilities, techniques, and

technical constraints of both languages are shown. A quantitative analysis of

the simulation runs is used to clarify the obtained results, which show that Go

is a usable, flexible, and well-performing language for applications, having a

good trade-off between productivity and efficiency, being a choice over C for

some cases. C is still opted as a reliable language for low-level and strict-

timing programming.

1. Introduction

Modern computing deployment drives the need for the creation of new programming

languages that would simplify and accelerate development of software. Doing more with

less without losing control of what is being coded is one of the key reasons for

continuous improvement of programming languages. This efficiency gain can mean

either coding less and faster to solve a specific problem or it can mean that the same

hardware architecture can become capable of doing more tasks simply by using a better

suited programming paradigm [Rojas 2000].

In the recent years, Go (which is also referred as Golang) is becoming popular due to its

pragmatism [TIOBE 2018]: it brings features such as good memory management, error

handling capabilities, simplified debugging, high readability while still being concise

and suited for performance-driven applications [Rouse 2017]. Its syntax, which inherits

some concepts from C, was designed with clarity in mind, having only 25 keywords.

Thus, it is minimalistic and easy to write [Pike 2012].

In this context, a comparison between Golang and other programming languages is

necessary. In this paper, moreover, it is presented the comparison in the context of

system with time restriction for embedded systems. Thus, the C language was chosen

for this comparison because it is still the most used one in this sort of application

[TIOBE 2018]. This C characteristic is useful to determine how efficiently other

programming languages deal with time performance: if the same software is coded in C

and also in any other language and then compared in terms of how fast they can run in

the same architecture, it becomes clear how much time-efficient that other programming

language is.

X Computer on the Beach 179

Besides time efficiency, but in the same work scope, an analysis of how well multi-

threading is dealt is also made necessary given the actual widespread usage of multi-

core computers architectures [El-Seoud 2017].

2. Background comparison

Table 1 shows a top-level comparison of both languages where it can be seen that they

make use of the same programming paradigm: both are Imperative and Procedural [Van

Roy 2004]. Differences appear with object orientation support. C only supports structs,

and they can only contain sets of data, not methods. On the other side Go does not have

an “object” declaration, but it allows the programmer to declare “types” which can

describe methods and data sets. Also, Go has “interfaces” that can be used to create

methods that take in generic parameters, which is a type of polymorphism. Class

inheritance is also substituted by type embedding, which can also be used on interfaces.

Those design characteristics aim for boilerplate reduction [Pike 2018] [Lämmel 2003].

They are both compiled and do not support scripting. C has a straightforward

preprocessor which is very helpful for code characterization, a feature that is not yet

available in Go. C is considered a mid-to-low level language since it isn’t very far from

machine code [Kernighan 1988] and doesn’t provide any memory management while

Go has an automatic garbage collector. When working with parallelism, Go has native

support to worker threads, thread syncing and data channels [Pike 2014], features that

are not native in C, although Pthreads are available as a POSIX standard.

Table 1. Go and C main features comparison

Language Name Go C

Creation date 2007 1972

Paradigm Imperative, Procedural Imperative, Procedural

OOP support Yesa No

Interpretation Compiled Compiled

Keywords 25 32

Preprocessor No Yes

Memory Management Automatic Manual

Abstraction level High Low

Script support No No

Parallelism CSP based, channels Pthreads, OpenMP, MPI

a.
Type embedding and interfaces are used to replace class inheritance and polymorphism

Deep into Go’s programming paradigm, it can be considered a multi-paradigm language

when using its library modules [Clark 2004], suited for multi-threaded with

asynchronous messaging applications. The Go language is classified as Active-

Object/Object-Capability-Programming because of its following properties: it has

named state, it has closures in the form of anonymous functions and it creates threads

with the use of the “go” keyword. Also, it can create ports by instantiating data streams

and it supports dynamic object relations by manipulating local and shared cells.

X Computer on the Beach 180

3. The Simulator Specification

3.1. Overview

A traffic control system simulator is a software that is capable of simulating traffic

behavior. It consists of a certain number of streets, crossings, lanes, cars, and traffic

lights.

During a simulation run, cars would move across the streets and obey standard rules

such as: stop on red lights, follow street’s flow direction, do not collide with other cars,

do not block crossings, move when lights are green, turn on crossings from time to time.

Cars are inserted at the beginning of every street on a determined timeframe according

to each simulation purpose. Still, logically, they also leave the streets after moving past

them. This simulation scenario allows for a study of traffic jams and also for a study of

traffic lights synchronization strategies to avoid them. Moreover, it also allows some

comparison between programing languages of same or different paradigms.

3.2. Specification

For the comparison of C and Go implementations, a square map of 10 north-south

streets and 10 west-east streets with 100 crossings was implemented. Cars would enter

this map following a Poisson distribution that varies between 0.1 to 0.5 cars per second,

per street lane. The simulation timeframe is of 2000s, which is not the execution time

but the time of the simulated real-time clock. The number of lanes per street vary from 1

to 4 and every crossing has a turn rate probability from 10 up to 35%. Two traffic light

strategies were implemented: 1 – traffic lights have a fixed cycle time and are not

synchronized with each other, called Independent Control (IC); and 2 – depending on

the block congestion level, traffic lights can have its red time shortened so car flow is

increased, called Control based on Congestion Level (CBCL).

A full and better detailed specification is available in a specification where all rules are

set, including semaphore timings, street lengths, car speed, car size, etc. [Renaux 2014].

3.3. Motivation

This simulator has a well-defined set of rules for its implementation. Its requirements

ask for the use of data sets and has enough need for mathematical operations that multi-

threading can be used to shorten execution time, leading to a good usage of different

features of both languages, being then considered well-suited for this work.

4. C Development Process

 Based on the fact that C is traditionally a good language for light-weight

applications, it was chosen for the first implementation so the focus would be to have a

well-performing version of the traffic simulator for a comparison basis with the Go

version. Some spartan programming techniques [Lalouche 2016] were used to reach the

following needs:

• No use of stack and dynamic memory allocation to reduce execution time.

Manual memory mapping was used instead.

• Encapsulation and decoupling are used as directives to minimize variable

scoping, but this cannot increase execution time significantly.

X Computer on the Beach 181

• Minimum use of variables and code branching.

• Functional blocks should have the minimum possible external calls/entry points

but the number of functional blocks should not be big enough so that the

boilerplate becomes a burden.

With these directives in mind, a group of data sets, functions and definitions were

developed, aiming at a minimalistic implementation that fulfills all requirements.

4.1. Software structure

The structure designed for the C version is shown in Figure 1. The package called

“street” holds most of the data. This data is declared straight into a memory address,

making them public inside the street package but not visible to the other ones. Set

functions were written so that a car insertion in the streets were made possible. Cars are

passed as reference from the traffic manager package, which holds a list of all cars also

mapped in the memory. Whenever a car reference is received, the street package uses

pointers to indicate in which “car slot” of the streets every car is situated.

The algorithm that takes most of the execution time is in the same package and is

responsible for moving all cars during the simulation. The chosen approach was to make

“car slots” in the streets that would point to cars whenever they are on the map. Cars

change from slot to slot. The algorithm also takes into consideration the street direction.

Thus, cars that are closer from the end of the streets are moved first and then the

collision testing between cars become simplified. This also leads to a small change in

execution time when the streets are filled with cars when compared to an empty map at

the beginning of a simulation.

+lanes per street

+turn rates

+traffic light strategy

+number of streets

+light timings

+simulation length
+multi-threading

strategy

-print screen()

-main() - upd traffic

manager

uses data

definition

car

+on map

+id

t

light

+timer

+pace

+update 1s()
+change light timer

declares

declares

uses data

definition

uses

data

definition

Street

+number

+block count

+car slots [][]

+lane count

+direction

+block occupation[]

Crossing

+turn rate []

+*street 1

+*street 2

+*light

-streets[]

-crossings[]
-lights[]

+insert car()

+move cars 200ms()

+calculate car

occupation()

controls

(interface

realization)

uses data

definition

-cars[]

+control lights 1s()

+upd traffic and lights

200ms()

+insert cars on map

200ms()

uses data

definition

controls

 (interface

realization)

Figure 1. Software structure

Since there are no copies of data and all information is passed as reference, there is little

object copying and lesser stack usage. Still, a lights package was created to manipulate

traffic lights timings and to grant the interlock between lights of a same crossing. This

package declares structures and functions that would take in light structures as

parameters and control them independently. The layer that call the functions inside this

package is the one responsible for lights synchronization, i.e. the street package.

X Computer on the Beach 182

All data inputs such as turn rates, number of streets in the map, number of lanes per

street are in the “app data definitions” package. It holds a group of definitions and look

up tables that are public as read-only information to whichever another package that

imports it. Car package declares only the attributes that constitute the car. In turn, the

traffic manager package is the one responsible for controlling the car insertion according

to a Poisson curve along the simulation. It also has the loop control that does the time

increment of the simulation.

The main package is responsible for initializing the structures by calling init() functions

of the other packages and by calling the traffic manager package functions that run the

entire simulator. Besides, there are three different ways to run the simulation:

1: The simulation can run in real-time so that 1 second of simulation represents 1 second

of time, taking 2000s to finish. Being then synchronized with an application clock.

2: The simulation can run in real-time so that 1 second of simulation represents 10

seconds of time, taking 200s to finish. Being also synchronized with an application

clock.

3: The calls are not synchronized with an application clock and function calls are called

again as soon as they return from their previous calls, being then limited to the CPU

processing capacity. The time it takes depends only on processing capability and on

code efficiency.

For this study, runs that were limited to an application clock, that is, cases 1 and 2, were

used only for debugging and troubleshooting purposes during the development. All

execution time evaluations were made under case 3.

5. Go development process

After this structure was coded and debugged in C, a translation to Go was made. Since

both languages were designed under the same computational paradigm, it was expected

that the same software structure would make it possible to attend all requirements. The

results of code translation were found satisfactory, here are the main difference points:

• Go still does not have a preprocessor (there can be directives to not compile a

file, but there are not tools to embed compiling directives in the code), so all

#define and #ifdef statements had to be replaced by read-only enumerations

stored in RAM memory. Then, the code had some extra “if()” statements added.

• There are no header files in Go. So, packages became a single *.go file instead of

one or more *.h and *.c files. Dependencies became clearer.

• The syntax between them is similar, but differences in parameter passing, error

capturing and data declaration led to a longer than expected translation.

• Thread control and application clock control is much easier to implement in Go,

its native libraries make it very easy to programmers kick-start their applications.

• Error back-tracing, hence debugging, is very clear and helpful in Go when

compared to the little support in C.

• Go has a lot of syntactic sugar in its syntax making it more concise.

• Data encapsulation and object orientation is supported in Go. So, while

translating the code, some data that was once public inside structures could

become private in the Go application.

X Computer on the Beach 183

6. Multi-threading

As dividing work between multiple computer cores was also of interest, a deeper

explanation on how this was made is necessary. All descriptions for multi-threading fit

both implementations, C and Go. Figure 2 shows the execution flow of the program

under a workflow representation. It can be noted that there is not a lot of conditional

branching, the program is sequential most of the time, with “while” statements

represented by gateways. These while statements are used to iterate through the

repetitive data sets such as all cars in the map, all traffic lights in every crossing, etc.

3 - Update Traffic

Manager Sub-Process

3.2 – Update car positions Sub-

process

3.1 – Insert cars Poisson distribution Sub-

Process

3.3 – Update traffic lights Sub-Process

2 -Initialize

packages

1 – Start

execution

clock

3 - Update

Traffic

Manager

Simulation

time >

2000s?

4 – Calculate

totals

Yes

5 - Plot

simulation

information

6 – Stop

execution

clock

No

7 – Wait for a

key press to

end

execution

3.4 –

Calculate

block

occupation of

all streets

3.2 – Update

car positions

3.2.1 -Move

cars from end

to beginning

of North-

South streets

North-South

streets over?

No

Yes

3.2.2 -Move

cars from end

to beginning

of West-East

streets

West-East

streets over?

No
Yes

3.1 – Insert

cars Poisson

distribution

Simulation

time > 400s ?

Simulation

time > 800s ?

Simulation

time > 1200s

?

Simulation

time > 1600s

?

No

3.1.1 - Insert

cars at 0.1

car/lane/

second

3.1.2 - Insert

cars at 0.5

car/lane/

second

3.1.3 - Insert

cars at 0.4

car/lane/

second

3.1.4 - Insert

cars at 0.2

car/lane/

second

3.1.5 - Insert cars at 0.1

car/lane/second

Yes

Yes

Yes

Yes

No

No

No

3.3 – Update

traffic lights

3.3.1 -

Update red-

green-yellow

light state

3.3.2 - Set the

opposite light

state from

the same

crossing

(interlock)

3.3.3 - Check

timing

changes

according to

block

occupation

(CBCL control

only

Have all

lights been

checked?

Yes

No

Figure 2. Execution flow of the application

Around 85% of the work done by the processor during the simulation happens on sub-

process 3.2. This was measured by checking the execution clock that is started on task 1

of Figure 2 and is stopped on task 6. When a bypass is added over 3.2, timing

measurements are reduced by 80 to 90% of what it was without the bypass. Logically,

this would be the best place to work on execution time improvements. Figure 3 shows a

two-thread approach that was implemented: Whenever 3.2 is called, two extra threads

are created, each one takes half of the “car slots” processing. Since they operate with

pointers and changing where they point to, the threads can share the access to data

without causing any race conditions or deadlocks.

The approach shown in Figure 3 did not have the expected outcome in C (using

Pthreads): During a 2000s simulation, sub-process 3.2 is called 10000 times, so the

creation and termination of threads became an unexpected overhead, causing no

improvement when compared to the single-thread approach. Detailed results are shown

in the next sections.

This led to another design: the use of thread pooling in C and of worker threads in Go,

depicted in Figure 4. Blocks that were painted in gray are the ones that changed/were

added over what was shown in Figure 4. For the C implementation, a library had to be

added [Seferidis 2018] since thread pooling is not a natively supported resource. When

the application starts, two thread pools are initialized with no work on them, at this

point the program has three threads, one running the application and two other threads

idling. Whenever the main thread reaches the call of the 3.2 sub-process, half of the

work is appended to one idling thread pool and half to another. The time taken to

append the work is very small so at this point two threads are moving cars and the main

X Computer on the Beach 184

one is free to start working on the traffic lights update. After the 2000s simulation

timeframe ends, the program waits for the pools to be idling and then delete their

instances.

In the Go implementation, worker threads are already available as a package. Two

worker threads are initialized at the beginning of the program execution and both are

linked to a data channel.

3 - Update Traffic

Manager Sub-Process

3.2 – Update car positions Sub-process

2 -Initialize

packages

1 – Start

execution

clock

3 - Update

Traffic

Manager

Simulation

time >

2000s?

4 – Calculate

totals

Yes

5 - Plot

simulation

information

6 – Stop

execution

clock

No

7 – Wait for a

key press to

end

execution

3.4 –

Calculate

block

occupation of

all streets

3.2 – Update

car positions

3.1 – Insert

cars Poisson

distribution

3.3 – Update

traffic lights

 8 – C: Create

2 thread

pools

Go: Create 2

worker

threads

9 – C and Go:

wait for work

completion

and

terminate

worker

threads/

thread pools

3.2.2 – Append “Move cars

from end to beginning of

West-East streets” to

worker thread/thread pool

#2

Are all North-

South streets

appended?

Are all

West-East

streets

appended?

No

3.2.1 – Append

“Move cars from

end to beginning of

North-South

streets” to worker

thread/thread pool

#1
No

Yes

3.2.3 -

Syncrhonization

event

Yes

Work completion

information

Work completion

information

Figures 3 (left) and 4(right) Execution flow for multi-threaded and thread pooling versions

of sub-process 3.2

Whenever 3.2 subroutine is called, two jobs are appended to the channel, each job

containing half of the work of the subroutine. The worker threads then automatically

read this channel and split the job between them. The only difference here is that there is

not a clear delegation of which worker thread will do each job, as opposed to the C

implementation where in each append it is clear which one is doing what. This

automatic delegation in Go depends on how overloaded each worker is, so it is a little

bit smarter than the thread pool used in C, being more suitable in cases where many

more threads and delegations are needed. Just like in C, at the end of the simulation the

program waits for the workers to finish their jobs and then the channel and workers are

deleted from the memory. Task 3.2.3 from Figure 4 created an opportunity for more test

scenarios, depending on the kind of multi-threading synchronization that is developed:

1: After appending the work from 3.2.1 and 3.2.2, the program would wait for both to

end their work before proceeding. This method was given the name of Hard Sync.

2: When the program reaches 3.2.3 it would wait for the work completion of 3.21. and

3.2.2 only once every 10 times. Being then called Soft Sync.

3: All the work appended to any of the worker threads/thread pools would work

independently, hence it would provide a higher throughput. This method was called No

Sync.

From the implementation standpoint, all are very easy to code since either Go and C

applications provide information about how much work is left on each thread. This is

represented in Figure 4 by the information arrows named “Work completion

information”. Both projects were made available online [Martini 2018].

3.2 – Update car positions Sub-process

3.2.1 -Move

cars from end

to beginning of

North-South

streets

North-South

streets over?

3.2.2 -Move

cars from end

to beginning of

West-East

streets

West-East

streets over?

3.2.0 -Open

two threads

Are both

threads

terminated?

Thread 1 Thread 2

Main flow

No No

3.2.3 -

Terminate

thread 1

Yes

3.2.4 -

Terminate

thread 2

Yes

No

Join

information

Join

information

Yes

X Computer on the Beach 185

7. Data Analisys & Metrics

The time analysis over all test cases already explained over the previous sections was

made on a single computer, for consistency. A 64-bit, dual core Athlon processor

running at 3.01GHz with 8Gb of RAM memory was used. The application ran under the

Windows 10 operating system with only the very essential operation tasks running on

the background, the executable file was called on the operating system with the highest

priority possible so that there would be little influence of the task scheduler over

execution time.

Also, 10 runs for every simulation case were made so that any non-determinism could

be captured. Average time, deviation and median value of the 10 runs are provided to

clarify when a time-variation happens. Time to code the software in both languages and

total line count is also provided for a development analysis.

For both applications the time spent to run the 2000s simulation was calculated the same

way: the program itself would open up a timer counter that starts on task 1 and stops on

task 6. It was considered that, since both languages use the CPU clock count to measure

time and that the simulation time is reasonably short, this method would provide

information precise enough for a comparison. Constants were used on both languages to

have a common output that would translate processor clock count to millisecond. CBCL

control and IC control, explained in section 3.2, are compared only in the single tread

control mode for simplicity.

8. Results

Table 2 shows the first results from the simulation runs in milliseconds. It is possible to

see that CBCL control takes more time to run on both languages since all block

occupation percentages have to be calculated from time to time so that traffic lights can

shorten their red time whenever blocks start getting full of cars. On IC control, block

occupation is calculated only once at the end of the simulation only to display this

information on the terminal.

Standard deviation values and median values from the 10 simulation runs show that the

application is deterministic in all cases. For IC control, Go was 8.1% slower and for

CBLC control, 5.8% than the C version. Interestingly, the increase in complexity added

13% of time on the C application, but only 10.6% to the Go one.

Tables 2 (left) and 3 (right). IC/CBLC control and compiling results, respectively.

 C Go

Development

time [h] 30 30

Total line

count 1112 1060

Executable

size 117KB 2.38MB

On table 3 some development and compiling information is shown. Development time

for the C version, which was the first version to be coded, summed 30 hours. Since the

Go version was just a translation of what was already coded in C, it was expected to

have a shorter development time, but a learning curve time caused some overhead to the

 C Go

Averag

e

Std.

Deviation Median Average

Std.

Deviation Median

IC - Single

Thread [ms] 1836 41 1826 1985 50 1985

CBCL - Single

Thread [ms] 2076 28 2074 2196 54 2176

X Computer on the Beach 186

Go total time given the author’s little experience with the language, indicating that Go

might be more productive than C, but this affirmation cares for more study. Line count

was very similar on both implementations, Go has a lot of syntactic sugar embedded on

it to make the code more concise, but as C is already a very concise language, the

difference ended up being small.

Executable size ended being very different between both applications but this didn’t

become a constraint for the development, the end result is shown just as a standard

output of the compilers in their “as is” configurations. It is also noticeable that in order

to target ROM-constrained architectures, the Go compiler would need to be properly set.

In some applications, Go ROM usage can reduce up to seven times when compared to

its standard configuration compilation [Pike 2018].

Table 4 shows the main differences in the multi-threading contexts. Standard deviations

are acceptable in all scenarios, but a little bit higher than expected on “CBCL – Multi-

thread pool – No sync” for the Go language. Median and Average values are close to

each other, meaning that there were no outlier values spoiling the average value. The

difference column shows how much slower the average of Go runs were in comparison

to the C ones.

Table 4. C and Go comparison – Multi-Threading

 C Go

 Average

Std.

Deviation Median Average

Std.

Deviation Median Difference

CBCL - Single thread [ms] 2076 28 2074 2196 54 2176 5.77%

CBCL - Multi thread [ms] 3840 141 3831 1590 65 1596 -58.61%

CBCL - Multi thread pool - Hard Sync [ms] 1597 59 1597 1756 97 1739 9.94%

CBCL - Multi thread pool - Soft Sync [ms] 1388 52 1363 1633 60 1647 17.61%

CBCL - Multi thread pool - No Sync [ms] 1075 40 1075 1560 117 1533 45.09%

“CBCL – Multi thread” line shows the overhead caused by thread creation and

destruction in every loop for the C implementation, in the Go implementation, the use of

“go func_name” feature in every call of the 3.2 sub-routine did not cause any

unexpected overheads, making the Go implementation run 58% faster. On the other

hand, all other simulation scenarios executed in less time on the C version. For both

languages Hard Sync was slower than Soft Sync, which was slower than No Sync, with

bigger gains on C than on Go. Since the Go version used a lot of manual RAM mapping

and static allocation, its garbage collector was not very much used, so this work doesn’t

exploit how much slower the application would run by using its automatic memory

management, being left as a suggestion for future study.

9. Conclusion

Worker threads in Go and thread pooling in C do not work exactly the same way, but

the final result is comparable and both are suited for multi-threading applications. By

comparing the average value of the runs, it is possible to notice that C is indeed faster

than Go, but not to a point where it becomes a burden to most of the applications. Since

Go is becoming a much more productive environment due to its many packages

available on online repositories, C would only be a choice over Go when execution time

X Computer on the Beach 187

is a big constraint, or when low-level resources are still needed to control hardware

functions, like on hard-time embedded systems and other time-critical applications.

References

Rojas, Raúl; et al (2000). “Plankalkül: The First High-Level Programming Language

and its Implementation”, in Institut frame Informatik, Freie Universität Berlin,

Technical Report B-3/2000, ftp://ftp.mi.fu-berlin.de/pub/reports/TR-B-00-03.pdf,

February.

TIOBE (2018). “Index programming languages”, https://www.tiobe.com/tiobe-index/,

June.

Rouse, Jeff (2017). “Why go is skyrocketing in popularity”, in Opensource.com, open

article, https://opensource.com/article/17/11/why-go-grows, November.

Pike, Rob (2012). “Go at Google: Language Design in the Service of Software

Engineering”, https://talks.golang.org/2012/splash.article, October.

El-Seoud, Samir Abou; et al (2017). “Big Data and Cloud Computing: Trends and

Challenges”, in International Journal of Interactive Mobile Technologies, November.

Van Roy, Peter; Haridi, Seif (2004). “Concepts, Techniques, and Models of Computer

Programming”, in the MIT Press.

Pike, Rob; Ken, Thompson (2018). “The Go Programming Specification”,

https://golang.org/ref/spec#Assignability, February.

Lämmel. Ralf; Jones, Simon Peyton (2003). “Scrap your boilerplate: a practical design

pattern for generic programming”, in Proceedings of the 2003 ACM SIGPLAN

TLDI’03, January.

Kernighan, Brian W.; Ritchie, Dennis (1988). “C programming language” in Prentice

Hall, March.

Pike, Rob (2014). “Hello Gophers” in Gophercon Opening Keynote,

https://talks.golang.org/2014/hellogophers.slide#1, February.

Clark, K.L.; McCabe, F.G. (2004). “Go! – A Multi-paradigm Programming Language

for Implementing Multi-threaded Agents” in Annals of Mathematics and Artificial

Intelligence, v41, p171-206, August.

Renaux, Douglas; Linhares, Robson R.; Simão, Jean M.; Stadzisz, Paulo C. (2014).

“CTA Simulator”, http://www.dainf.ct.utfpr.edu.br/~douglas/CTA_CONOPS.pdf,

June.

Lalouche, Gal. (2016). “Spartan Programming”,

https://webcourse.cs.technion.ac.il/236700/Spring2016/ho/WCFiles/06-

Spartan%20Programming.pdf.

Seferidis, Johan Hanseen (2017). “C-Thread-Pool”, https://github.com/Pithikos/C-

Thread-Pool, April.

Martini, Guilherme (2018). “C and Go CTA”

https://github.com/ghkmartini/CandGoCTA , July.

X Computer on the Beach 188

