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Abstract. In this work, we propose a method to achieve microscopy image seg-
mentation, in which a convolutional neural network (CNN) is used. The method
is divided in two parts: (i) the CNN is trained for pixelwise classification of im-
age; (ii) the training CNN is accelerated, removing the redundant operations,
allowing the classification of the pixels from an entire image patch at the same
time. The method was evaluated over a dataset with 120 images obtained us-
ing conventional microscopy in sputum smear sheets prepared according to the
Ziehl-Neelsen technique. In the experimental evaluations carried out on this
dataset, we obtained an accuracy of 97.33% and recall of 96.30%. The accel-
erated CNN is 44 times faster, maintaining identical prediction results. These
results show that the proposed method has the potential to handle the given
problem.

1. Introduction
According to the United States Centers for Disease Control and Prevention (CDC), tu-
berculosis is an infectious disease caused by the Mycobacterium tuberculosis bacillus. It
usually affects the lung, but it can also attack any part of the body, such as liver, spine and
brain [CDC-Tuberculosis 2018].

The health problems caused by tuberculosis affect approximately 10 million peo-
ple each year and is one of the ten leading causes of death in the world. In the last 5
years, it has been the world’s leading cause of death by a single infectious agent, beating
HIV/AIDS [WHO et al. 2017]. Despite this fact, if the diagnosis is made at the right time,
most people who develop tuberculosis can be cured [WHO et al. 2017].

Diagnosis of tuberculosis disease is usually made by coloring a microscope slide
using the Ziehl-Neelsen staining method, which is then analyzed by a specialist, using
an optical microscope in the search for bacilli [Smart 2017]. This is a simple, quick and
inexpensive technique that is extremely specific in areas with high tuberculosis preva-
lence [ISTC 2006]. Two methods of microscopy can be used for the detection of tuber-
culosis bacilli: conventional microscopy and fluorescence. Although fluorescence mi-
croscopy has a sensitivity of about 10% greater when compared to light microscopy, it is
less common in developing countries because it has a higher cost [ISTC 2006].

The inspection process which includes, in addition to checking, the counting of
bacilli, is usually time consuming and tiring. Therefore, a system of automatic recognition
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of tuberculosis bacilli would be interesting, allowing the diagnostic process to become
faster. To perform such task, a fundamental step is the segmentation of the microscopy
image. Segmentation of an image is understood as the task of subdividing the image into
its constituent regions. The way the subdivisions are made depends on the problem to be
solved [Gonzalez and Woods 2012]. For the case of two-class (binary) segmentation, a
binary image (which classifies each pixel of the image into one of two classes) is generated
from the original image. In this case, it is understood as binary object any set of pixels in
the binary image that correspond to a bacillus or bacilli grouping.

In this article we propose a technique of segmentation based in a convolutional
neural network (CNN). Specifically, a CNN is used to operate as a predictor of classes
generating a probability image, called as heatmap. The values of the pixels of a heatmap
are in the range [0, 1] and represent the probability that a pixel belongs to a bacillus. The
most probably class of each pixel is determined using an argmax function. Here, two
principal differences in the training and test steps of the CNN are proposed, in short:
(i) in the training step, the CNN is trained using sparse samples from the training set,
allowing the creation of a classifier capable of give the probability of a pixel to belong
to a bacillus; (ii) in the test step, the CNN is accelerated, removing redundant operations
that otherwise would occur if we were to classify every single pixel of the image. This
modification makes the image segmentation process many times faster. Experimental
results on a dataset indicated that the proposed technique obtained results with an accuracy
of segmentation of 97.33% and recall of 96.30%.

2. Related Work
Although the earliest microscopy image segmentation works have used the fluorescence
technique, they will not be mentioned here because they involve a higher cost imaging
method and therefore less used in developing countries.

The authors of [CostaFilho et al. 2012] propose to use the difference between the
R (red) and G (green) color channels to segment the image using a global adaptive thresh-
old segmentation technique. The artifacts present in the segmented image are eliminated
using morphological filters, color filters, and size filters. Binary objects with less than 200
pixels are removed. The results achieved were 76.65% and 12% for sensitivity and accu-
racy, respectively. However, no details are given about how these values were achieved.

In [Siena et al. 2012] is used decorrelation stretch [Chitade and Katiyar 2010] as
a pre-processing step, followed by a segmentation technique based on the clustering algo-
rithm k-means. The classification of the segmented structures is done using a multilayer
artificial neural network with 15 neurons in the hidden layer. The result of this work is
an accuracy of 88%. Nine CDC images were analyzed (tested), while the training images
were those used in [Forero et al. 2003]. In this study, quantitative results are not presented
in relation to segmentation.

In [Chayadevi and Raju 2014] is presented a color-segmentation technique using
the Watershed algorithm on Y CbCr, HSI , and Lab color spaces. Then, binary objects
are analyzed by shape characteristics, such as: area, perimeter, compactness, eccentricity,
major and minor axis, a ratio between the axes and some of their invariant moments.
However, no quantitative evaluation is performed.
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In general, the cited works have the following restrictions: they use threshold-
dependent global segmentation techniques [CostaFilho et al. 2012], and they need highly
parameterized post-processing steps [Sadaphal et al. 2008] [CostaFilho et al. 2012]
[Chayadevi and Raju 2014] and, in some cases, quantitative analyzes of the results are
not presented [Chayadevi and Raju 2014].

Differently, the proposal of this work is based on the use of a CNN acting as a
predictor of binary classes. By extracting information from the data themselves, there is
no need to manually adjust the segmentation parameters: it “learns” in its training stage,
generating a high accuracy in the segmentation.

In relation to the use of CNNs in the task of segmentation of medical images, in the
literature one can find different applications. For example: [Chen and Chefd’Hotel 2014]
make use of a CNN to target cells of the immune system present in microscope slides with
tumor samples. Such cells are highlighted using immunohistochemical (IHC) staining. In
this work, a correlation coefficient between the number of cells counted by the algo-
rithm and the number of manually counted cells was of 99.49%; in [Tschopp et al. 2016]
the segmentation is done using a CNN and a sliding window approach to classify ev-
ery pixel and predict membranes from the nervous system of organisms like Drosophila
melanogaster. The nervous system structure image is captured with a high-throughput
Electron Microscopy (EM). Since the use of CNNs to classify single pixels takes a lot of
redundant computations when using sliding window approach, a method to classify the
pixels simultaneously of entire patches is also proposed.

3. Proposed method
The proposed method for the microscopy segmentation problem is described in this sec-
tion. This method is divided in two steps, specifically:

• Pixelwise class prediction: Using the methodology based on patches, a CNN is trained
to predict the probability of every input pixel to belong to a given class. The pixels can
be either the object of interest (bacillus or group of bacilli) or the background. The
already trained network is applied to every pixel of the microscopy image, generating
as output a probability image.
• CNN acceleration: Using the same weights, the architecture of the original CNN is

modified to remove redundant operations that comes when classifying every single
pixel of the test image, allowing a speedup of the overall process.

Both steps will be explained on the following subsections.

The proposed methodology based on patches has six main steps summarized in
Figure 1 and explained below:

1© For each training image, patches in which the central pixel belongs to a bacillus (pos-
itive samples) or their central pixel belonging to the background (negative samples)
are randomly extracted. The features of these patches will be explained in detail in
Subsection 4.2.

2© As Subsection 3.2 describes, the CNN is trained using the patches from step 1.
3© An entire image patch is fed to the Accelerated CNN.
4© With the weights obtained in the training step, the Accelerated CNN is an improved

version of the trained CNN. The process of converting between both CNNs is de-
scribed in Subsection 3.3.
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Figure 1. Framework used in this work.

5© From the probability image patch, a binary image is generated using the maximum a
posteriori (MAP), that assigns for each pixel from the patch to the class that has the
largest posterior probability.

6© The entire segmented image is a mosaic of smaller segmented patches of the input
image.

3.1. CNN architectures

A CNN is similar to a classical neural network, containing layers of neurons that perform
operations on the results of the previous layers, and the parameters of these operations are
adjusted in a training step. CNNs have been used in problems involving image processing
and computer vision, since they have the capacity to consider spatial characteristics of the
image, because they are based on the convolution operation. A current summary of the
subject can be found at [Gu et al. 2015] and [Rawat and Wang 2017].

The CNN architecture is composed by many layers, and two types of relevant
layers are the convolutional layers and max pooling layers. The convolutional layers are
formed by masks that slide over the pixels of the image by performing linear operations,
and their outputs pass through a nonlinear function (in this work the ReLU function is
used) [Nair and Hinton 2010]), which adds a greater ability for the network to “learn” a
task. The amount by which each mask shifts on the image is the stride (s). Stride equals
to 1 means the mask shifts one unit at a time. In turn, the layers of max pooling aim to
reduce the size of the array by selecting the maximum value of each set of values defined
by the size of the mask to be applied. Additionally, max pooling layers help to build a
network that is more robust to translations in the input image.

3.2. Pixelwise class prediction

The methods based on patches have been increasingly used on the field of medical imag-
ing, with several applications, such as image segmentation, image denoising, image regis-
tering, anomalies detection and image synthesis [Wu et al. 2015]. Neural Networks patch
based solutions, as CNNs, demand a huge amount of samples, in this case images, for an
adequate training. This premise is difficult to achieve in the medical field, because it is
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necessary to have an expert to manually annotate the images, and this result in datasets
that usually contain few images. Such limitation is circumvented using patches, since
from each image several smaller regions can be extracted (patches), thus increasing the
amount of training samples for the CNN. In this type of approach the image segmentation
is done on each pixel separately, instead of an image at a time[Litjens et al. 2017].

In this work, the CNN used was based on the LeNet-5 [LeCun et al. 1998] net-
work, being modified for the case where the input is a patch of dimensions 45 × 45 × 3
pixels, drawn around a pixel at be classified as background or object. Such pixel be-
longs to a color image in the RGB color space. This architecture is easily trained and
has shown that produces good classification results in datasets of images with similar di-
mensions [LeCun and Cortes 2010]. This CNN has 2 interpolated layers plus 2 layers of
max pooling. The final 2 convolutional layers are used to generated the fully connected
layers. The output layer, consists of 2 neurons with the softmax activation function, where
each one of the neurons indicates the probability value of the central pixel of the patch be
an object (P (F )) or background (P (B)). The training network structure is illustrated in
Figure 2.
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MAX
 POOL1

CONV2
(64)

MAX
 POOL2

CONV3
(512) FC

4x4x32
s = 1
ReLU

42x42x32 21x21x32 18x18x64 6x6x64 1x1x512

softmax2x2x1
s = 2

3x3x1
s = 3

45x45x3

6x6x64
s = 1

4x4x3
s = 1
ReLU

Figure 2. CNN used for the training step. In this network, s is the stride of the
convolutional/pooling kernel.

3.3. CNN acceleration

Sliding window techniques for pixelwise classification have great overlap between adja-
cent windows, which implies in redundant computation of convolutions and poolings. To
overcome this, [Li et al. 2014] and [Tschopp et al. 2016] show a method to convert the
pixelwise classification CNN into an optimized Accelerated CNN, eliminating the redun-
dant computations present in sliding window segmentation. They propose a technique
called strided kernel, which overview can be seen in Figure 3.

(a) (b)

Figure 3. (a) In sliding window segmentation, each pixel of the image is clas-
sified individually; (b) in strided window segmentation a whole patch is
segmented at a time. Image adapted from [Tschopp et al. 2016].
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Since the CNN’s layers with stride greater than 1, specially the poling layer, re-
duce the resolution of the input image, the main idea of the strided kernel technique is
to modify the original convolution and pooling kernels by inserting a specific number of
zeros to compensate the down-sampling. [Li et al. 2014] call these kernels d-regularly
sparse kernels. In the paper presented by [Yu and Koltun 2015] these kernels are called
dilated convolutions. An example of dilated convolution kernel can be seen in Figure 4.

(a) k ∈ R3×3. (b) k conversion result.

Figure 4. (a) 3 × 3 convolution kernel k and d = 1, whose entries are repre-
sented by colored squares. (b) Conversion of convolution kernel k in (a)
to a 2-regularly sparse convolution kernel k with d = 2. Image adapted
from [Li et al. 2014].

Following the conversion procedure presented in [Tschopp et al. 2016], the Ac-
celerated CNN structure is presented in Figure 5.
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Figure 5. Accelerated CNN used for whole image patch segmentation. In this
network, s is the kernel stride and d is the dilation rate.

4. Experiments and Results
4.1. Dataset
The dataset used in this work consists of 120 images of 12 patients, being 10 images of
a single slide for each patient. The images were obtained using a 10 MegaPixel camera
attached to a conventional microscope. The images of the slides with the sputum smear
were prepared using Ziehl-Neelsen staining. The training and test set images have a fixed
resolution of 2816 × 2112 pixels. In all images, the bacilli were identified and marked
pixel by pixel by a specialist. This dataset was obtained from [Soares et al. 2015].

4.2. Implementation Features
The CNN was implemented using the TensorFlow library, version 1.5.0 on Python. In
addition, the configuration of the machine used in the experiments was: (i) Linux oper-
ational system, Ubuntu 18.04 LTS distribution; (ii) Intel core i7-8700k with 6 physical
cores; (iii) 32 GB DDR4 RAM memory; (iv) 2 TB data store unit (Hard Disk) + 240 GB
SSD; (v) NVIDIA Geforce GT 1080Ti video card, with 11 GB dedicated memory.
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The training and test sets were created from the dataset, each with 60 images. A
validation set was separated from training patches to validate CNN’s learning. This set
corresponds to 10% of the total number of training patches. The set of training patches
was created according to the following methodology: for each one of the 60 images of the
training set, 300 patches were randomly extracted as positive samples and 300 patches
as negative samples. In cases where the patch had pixels outside the image, it was filled
using mirrored padding. All patches have dimensions of 45× 45× 3 pixels.

The hyperparameters used for the CNN and the Accelerated CNN and segmenta-
tion are: (i) Regarding the CNN: the initial learning rate used is 0.01, with an exponential
decay of 0.95. The CONV3 and CONV4 layers have its weights normalized using L2
norm. The search for these parameters was empirical. (ii) In relation to segmentation, if
P (F ) is greater than P (B) the corresponding pixel is considered to be foreground (F ),
else background (B). This is done using an argmax function.

4.3. Segmentation time
In Figure 6 is presented the segmentation time for the original and the accelerated CNN.
From such figure, it can be seen that the segmentation mean time for the original CNN
and Accelerated CNN are 105.68s and 2.42s, respectively. This means that the accelerated
CNN is about 44 times faster.
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Figure 6. Segmentation time on the test set.

4.4. Segmentation results
Considering that pixelwise segmentation was modeled as a binary classification prob-
lem, the evaluation used in this work is done using the following metrics: (i) accuracy
(Ac), which evaluates the technique’s ability to correctly classify pixels as object or back-
ground; (ii) recall (Re), which evaluates the technique’s ability to correctly classify all
pixels labeled as objects (bacilli); (iii) precision (Pr), which evaluates the technique’s
ability to wrongly classify few pixels from the background as object. and, (iv) F1 mea-
sure which is the harmonic mean between recall and precision. These metrics are defined
by the equations: Ac = TP+TN

TP+TN+FP+FN
, Re = TP

TP+FN
, Pr = TP

TP+FP
and F1 = 2 Re.Pr

Re+Pr
,

where TP are the true positives (numbers of pixels correctly classified by the CNN as
object), TN are the true negatives (number of pixels correctly classified by the CNN as
background), FP are the false positives (number of pixels wrongly classified by the CNN
as object), and FN are the false negatives (number of pixels wrongly classified by the
CNN as background).The evaluation of the metrics Ac, Re, Pr and F1 on the test set is
shown in Table 1.
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Table 1. Metrics on the test set when using the original and the accelerated CNN.

Accuracy Recall Precision F1 measure

Original CNN 97.33 96.30 30.95 42.36

Accelerated CNN 97.33 96.30 30.95 42.36

About the values obtained, the following comments are made: (i) since the two
networks share that same weights and the Accelerated CNN is constructed in way that
mimics the original CNN output, the value of the metrics evaluated are the same in both
CNNs; (ii) the high value of accuracy is caused by the large amount of true negatives.
As the number of pixels belonging to the background is much larger than the number of
pixels belonging to the bacilli, the amount of true negatives has a much greater weight
in the calculation of accuracy than the true positives; (iii) the high recall value indicates
that the technique is able to segment almost all the pixels belonging to the bacilli. In
medical imaging this is preferable rather than high accuracy. The more structures are
identified as bacillus, the greater the chance of detecting the disease. Although this is
done with a large number of false positives (implying a low accuracy), it is less likely that
a tuberculosis patient will be diagnosed as being healthy (and not taking the treatment)
than the reverse; (iv) the low precision value indicates that several false positives are
detected in the segmentation, i.e., some pixels belonging to the background are classified
as bacilli; (v) it should be noted that the problem itself is strongly unbalanced, i.e., the
number of pixels corresponding to the background is greater than the number of pixels
corresponding to the bacilli (each image has a mean of 99.14% of the pixels belonging
to the background and 0.86% belonging to the bacilli). Such imbalance of the classes
produces that the false positives have a strong impact in the calculation of the precision;
(vi) the low value of the measure F1 is caused by the low precision of the technique, since
the value of the recall is high.

An example of a segmented image can be seen in Figure 7. It may be noted that:
(i) because of the high recall of the technique, it is able to segment all of the specialist-
labeled bacilli as well as some unlabeled structures (see Figures 7b and 7c); (ii) the
segmentation does not work well on the edges of the bacilli, together with the extra objects
that are not in the marking, decreases the precision of the technique (see Figure 7d).

(a) (b) (c) (d)

Figure 7. Example of a segmented image. (a) Input image; (b) Segmented Image;
(c) Ground truth; (d) Difference between (b) and (c).

5. Conclusion and future works
The main objective of this work was to propose a technique for the segmentation of micro-
scopic images of colored sputum blades according to the Ziehl-Neelsen method. The pro-
posed technique is based primarily on a Covolutional Neural Network using the patches
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methodology and its accelerated version using dilated convolutions. Comparing the two
versions, the accelerated CNN is 44 times faster than the original CNN and both achieve
exactly the same results. In relation to the segmentation result, using a microscopy image
dataset, an accuracy of 97.33% and a recall of 96.30% was obtained. From the values of
precision and recall it was observed that the proposed technique presents: high accuracy
due to the large number of background pixels, and a high recall, due to the identification
of a good part of the pixels belonging to the bacilli. On the other hand, the precision was
low (30.95%), due to the imbalance of the classes, since in average each image contains
99.14% of the pixels belonging to the fund and 0.86% belonging to the bacilli. Finally,
in order to reduce the number of false positives, a classification step of segmented binary
objects based on the morphological characteristics of these objects will be implemented
in the future.
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