
A Low-Power and Performance-Efficient Co-design
Implementation of AES Encoder

Ricardo P. Robaina1, Fabio L. Ramos1, Bruno S. Neves1

1Universidade Federal do Pampa (Unipampa)

ricardorobaina11@gmail.com, {fabioramos,brunoneves}@unipampa.edu.br

Abstract. Encryption algorithms are required for a higher safety degree when
considering, for instance, data exchange in computer networks. AES (Advanced
Encryption Standard) is an alternative to cipher data and therefore increase
the security of sensitive data communication. A possible approach for a
good trade-off of this application regarding processing time, area, power, and
time-to-market is to use a co-design fashion, where portions of the algorithm
run in a processor, while other parts operate in hardware accelerators. The
proposed work, name LP-SB, is a low-power proposal for an AES co-design,
where the power-critical step of the algorithm (i.e., SubBytes) is ported to an
accelerator and, therefore, two low-power techniques are inserted for that block.
Power results running LB-SB on gate-level netlist resulted in around 13% of
power reduction when compared with the same block without the low-power
techniques. Moreover, the AES co-design proposed achieves 44-times more
performance when compared to the software-only solution, which is within the
expected improvement when compared to related AES co-design works.

1. Introduction
The intercommunication of information between several organizations and individuals
through the computer networks requires efficient security mechanisms, considering the
current environment of data exchange. Therefore, throughout the history of information
security, several cryptographic algorithms exist for data protection in different categories;
examples of such algorithms are DES, RC4, RSA and AES [Ravi et al. 2002].

The AES (Advanced Encryption Standard) algorithm [NIST 2001] is an
alternative for the purpose above, which adoption by the U.S. government makes
it an important matter of research, being also the most widely used by the
industry and by the academic environment [Wang et al. 2015], [Lin et al. 2009],
[C. T. O. Otero and Manohar 2015], [Drimer et al. 2008], [Mangard et al. 2003]. In the
current context, the AES receives particular attention, not only for providing a high level
of data security, but also for its high efficiency during the process of encryption/decryption
of the information, and for its low memory consumption, which enables its massive use
in mobile devices.

Hence, there are three different implementation types one may follow to
accomplish an AES design: (i) Full Software Implementation: when all computations
run at a general purpose processor, providing fast development and update, at the cost
of slow execution and high CPU overhead. (ii) Full Hardware Implementation: in this
fashion, the whole algorithm executes at a specific hardware design, which requires

X Computer on the Beach 695 



much longer development time compared to the software-only version, but with the
advantage of higher performance. (iii) Hardware/Software Co-design Implementation: in
this hybrid approach, a part of algorithm runs at a general/embedded purpose processor,
whereas the other most critical portions of the application run at specific hardware
accelerator architectures, usually implemented within an FPGA. In many cases, this
approach produces a better tradeoff between design requirements such as execution time,
area, power consumption, and system development time [Mangard et al. 2003].

This work presents a low-power approach for a co-design architecture for an AES
encoder, name LP-SB, where low-power techniques were inserted into the chosen AES
step to be run in the accelerator, achieving around 13% of power dissipation reduction.
Moreover, our co-design of AES encoder accomplishes circa 44 times more performance
when compared to the software-only version.

The paper organization is as follows: in the next section, a review of the AES
encoder algorithm is presented. The related works appear in Section III. Section IV
reports the methodology used for the present work. The implementation of the low-power
AES encoder co-design is presented in the Section V. Results and comparisons are shown
in Section VI, whereas Section VII concludes the paper.

2. AES Algorithm
The Advanced Encryption Standard (AES), by National Institute of Standard and
Technology (NIST), is a symmetric 128 bits block cipher that uses a key length of 128,
192 or 256 bits [Ravi et al. 2002]. The AES is a round-based algorithm, where the number
of rounds depends on the key length.

As shown in Figure 1, in each round, the AES algorithm performs four macro
operations on the input block (named BlockIn in Figure 1), where they are called
AddRoundKey (AK), SubBytes (SB), MixCollumns (MC) and ShiftRows (SR). The data
input block that is modified by these operations has 128 bits organized in a 4x4 matrix of
bytes. The key used in each round (i.e., the round-key) is generated from an initial key
expansion step (named ExpKey).

Figure 1. AES encoder operations flow

After the key expansion step, the algorithm executes the AddRoundKey and, in
the next nine rounds, the four AES operations are executed repeated times. In the last
round, AES executes all its operations, except MixCollumns.

A brief description of AES steps is as follows:

• AddRoundKey (AK): executes a simple bitwise XOR between the round key and
the encrypted data block (named state matrix).

X Computer on the Beach 696 



• SubBytes (SB): executes a substitution of the bytes in the state matrix by bytes of
an auxiliary matrix, named S-Box. The calculation of the position of the element
read from S-Box occurs by dividing the current byte from the state matrix into
two nibbles. The most significant nibble indicates the line of the element in S-
Box, whereas the least significant nibble indicates the column of this element.
Figure 2 illustrates this operation.
• ShiftRows (SR): this operation rotates the bytes in each row of the state matrix for

a specific number of positions according to row number. Thus, the row number
zero remains unchanged (zero rotation is performed on this row). After that, each
byte on the row number one jumps one column to the left of the current one.
Similarly, on the row number two, each byte jumps two columns to the left and,
on the row number three, each byte jumps three columns to the left.
• MixColumns (MC): the computation performed is equivalent to a multiplication

of each column of the state matrix by a matrix of constants. In this paper,
however, it was used an optimized version of MC operation, in which the matrix
multiplication replacement occurs by successive execution of shifts and XORs
operations, as better described in [8].

Figure 2. S-Box addressing flow

3. AES Co-Design related works
There are some works found in the literature, which refer to an AES co-design approach.
This section is intended to discuss these works. In [Wang et al. 2015] the authors propose
a co-design for AES in which the MC operation runs in hardware, while the rest of the
AES encoder is executed in a MIPS-based processor, using different multi-cores approach
to assess the speed-up achieved by the proposed arranges. The results come from RTL
simulation of the proposed scenarios, where a 2x4-core arrange achieves the best speed-
up of around 9.78 times when compared to the AES encoder running solely on a single
processor.

The work of [Lin et al. 2009] also assesses various scenarios of AES co-design,
where combinations of AK+SR and MC, along which different S-Box approaches, are
processed in specific hardware accelerators, and the rest of the AES encoder runs on a
Nios II soft-core processor for Cyclone FPGA. The combination AK+SR+MC achieves
the best result, along with a single S-Box table, reaching a speed-up of 67.7 times
compared to the baseline AES running entirely on the Nios II processor.

In [C. T. O. Otero and Manohar 2015], the authors have analyzed all possible
combinations of hardware-software co-design for AK, SB and MC operations. For

X Computer on the Beach 697 



instance, the authors have made different AES co-designs, putting either one of the
AES operations to run on an accelerator, two of the cited operations, or finally all of
them running at the accelerator. The AES chosen operations to work at software used
two hardcore-processors: ULSNAP and MSP430. ASICs were made for all the AES
operations combinations on the accelerators, and run along one of the cited processors.
AK + SB + MC working in the accelerators achieve the best result, whereas the rest of the
AES encoder operates in the MSP430 processor: a speed-up of around 29-times compared
to software-only AES solution. Moreover, in [C. T. O. Otero and Manohar 2015], a
power-gating approach is proposed, to save energy during idle moments an AES encoder
would undergo in a WSN (Wireless Sensor Network) application. Nevertheless, the
proposition seems to be especially beneficial for a full-hardware AES solution, and only
to save static power dissipation, as power-gating application is for that purpose.

4. Methodology

This section presents the methodology used for the development of this research, which
Figure 3 summarizes. The first step of this flow consists in configuring an embedded
softcore processor with the AES algorithm. After this initial configuration, the execution
time evaluation of the AES four operations occurred, to gather representative information
to execute the next step of the methodology: the hardware/software partitioning of the
AES.

Figure 3. Methodology scheme for the proposed AES co-design

Based on the analysis of the execution time per operation, the second step of the
flow consists in detecting the dominant set of AES operations that respond to the majority
of the application execution time. If more than one operation corresponds to the majority
of AES execution time, the estimation of additional area occupied by each AES step is
an important point of the flow, to prevent the final size of the hardware to be similar to
the one of a full hardware implementation of the algorithm. High-Level Synthesis (HLS)
tool utilization may apply for that purpose, such as the HLS compiler made available by
Altera [Altera a].

The third step consists of a manual development of the AES operations, pointed
out by partitioning step, to run in hardware (i.e., in the FPGA).

In the fourth step, it is implemented the necessary interconnections to link all the
dedicated hardware with the processor. For this purpose, the Nios II soft-core processor
tool suite [Altera b] was the platform chosen to implement the co-design. The Nios
II executes the software components, whereas the hardware parts connections to this
processor happens using Qsys, which is suitable for rapid system IP integration and
prototyping [Altera c].

X Computer on the Beach 698 



After the coupling of the dedicated hardware blocks, the next step of the flow
is to make the co-synthesis of the entire system to analyze area and frequency of the
hardware. In sequence, occurs the system prototyping and execution on FPGA, to assess
the execution time for the co-design solution. A gate-level evaluation of the power
consumption was made on the developed component.

5. Co-Design of the low-power AES encoder
As defined in the methodology, an analysis of the software version of the algorithm was
made to identify the main bottleneck of the AES encoder. Figure 4 presents a graph of the
impact of each operation in the execution of the algorithm regarding of the percentage of
the time.

Figure 4. AES operation impact in the software-only execution time

As it is possible to notice, the SubBytes (SB) step corresponds to the major
impact on execution time assessed by our analysis (i.e., 74% of the total execution time).
Therefore, according to the partitioning step of our methodology, SB was the only chosen
AES operation to run in the hardware part of our proposed co-design. The remainder
of AES algorithm operates in the processor (i.e., software). Furthermore, as related
in [C. T. O. Otero and Manohar 2015], the SB operation is the most critical regarding
power dissipation when done in hardware. Therefore, it has the highest power reduction
potential. Figure 5 shows the conceptual illustration of our AES co-design choice.

Figure 5. Full LB-SB accelerator architecture

An S-Box is required for the SB step, as already mentioned. Therefore, a study
was made of possible S-Box implementation forms. One solution would be to implement
the S-Box using FPGA memory (i.e., memory bits). This solution would have less impact
on the FPGA logical elements, but would not exploit the parallelism that naturally exists
within the operation. Another possibility is to implement the S-Box with a ROM. Hence,

X Computer on the Beach 699 



there will be a considerable impact on the component area. However, it is possible to
explore the parallelism of the operation. It was chosen to use the ROM on the development
of our S-Box to exploit the parallelism and thus obtain an increase of performance that
justifies the co-design our S-Box.

A combinational solution of the SB operation was the best choice for
implementation since there is no dependency among blocks of encrypted data. Therefore,
the entire SB step executes in only one clock cycle. This choice was made to obtain a
better result of the performance for the proposed co-design.

In our proposed architecture for the SB, named LP-SB, two power reduction
techniques are used. The Operand Isolation technique [Correale 1995] is applied to the
input signal of the architecture (i.e., the AND gate in Figure 6), preventing the architecture
capacitances from changing state when the computation result of this step is not necessary.
We expect to have this portion of the algorithm to be idle for some time since it has to
wait for results coming from the CPU, which potentially will last longer to provide the
data required for the SB step. Additionally, a Clock Gating [Wu et al. 2000] is applied to
the output register, since the final output also will be necessary only at given moments.
Therefore there is no need to keep the clock switching the whole time at these registers.

Figure 6. Proposed AES co-design partitioning

Figure 6 shows in details the LP-SB version architecture for one byte of the
block. The byte is divided in the middle (i.e., two nibbles are generated). The value
contained in the most significant nibble passes through a shift-left by four positions, i.e.,
a multiplication by 16. The addition of least significant nibble to the shift output occurs,
and that is the reason why the S-Box address implementation in memory with contiguous
address positions was chosen. Thus, the output signal receives the value whose address
was previously calculated at the adder in Figure 6.

Moreover, the component as a whole is given by the concatenation of sixteen
of these circuits in parallel, sharing only one S-Box implemented in a ROM memory.
Figure 7 presents the full hardware component, where the variable N is equal to 16. One
may notice that the use of the low-power techniques proposed is multiplied by the number
of LP-SB instances used, which increase the potential of estimated power reduction for
our design as a whole.

6. Results
The evaluation was done in a version of the AES encryption algorithm with 128-bits block
size and input key. The tool used for synthesis is the Quartus II version 13.1, and the
FPGA used in the evaluation of the execution time was the Cyclone III (EP3C25F324c),

X Computer on the Beach 700 



Figure 7. LB-SB architecture

in which the soft-core processor Nios II is instantiated. An enable signal is used to inform
when LP-SB has finished its processing and is ready to send data for the rest of AES, and
vice-versa.

An analysis to verify the area overhead when using the co-design approach is
presented in Table 1. The co-design version, i.e., Nios II processor and LP-SB, generates
an increase of 50.55% in the FPGA area compared to the software-only version. These
results were obtained by synthesizing both versions for the chosen FPGA.

Estimated real stimuli were applied to our co-design, to evaluate power
consumption. These stimuli derive from a NIST reference model [Dworkin 2001]. The
values sampled were analyzed with the number of cycles that each operation lasts in the
CPU. Figure 8 shows the time proportion that each stage occupies. Our analysis estimated
that, in most of the time, the SB operation is idle, because it requires only one cycle, as
already mentioned. This scenario justifies the use of power reduction techniques.

Figure 8. AES operations time estimation within LP-SB design

A gate-level power consumption evaluation was performed comparing LP-SB
with a baseline version of SB in hardware, which is the same architecture of LP-SB,
but without the insertion of the proposed low-power techniques, named BL-SB. Table 2
presents the results of dynamic power consumption obtained in the tests performed by
encrypting a 128-bit block at a frequency of 50 MHz.

Table 1. Logic elements for AES designs

Design Logical Elements
Full Software version 2352
Co-design version 3541

X Computer on the Beach 701 



Table 2. Comparison between aes co-design versions

AES co-design Max Frequency (MHZ) Dinamic Power (mW)
BL-SB 100.06 16.76
LP-SB 115.27 14.61

Table 3. Execution times of aes approaches for different input block amounts

Version 1 Block 1K Blocks 10K Blocks
Full Software version 0.148 s 148.771 s 24.57 min
Co-design version 0.003 s 3.453 s 0.575 min

As estimated and expected, the SB stage is active in less than one-quarter of the
total execution time of the AES encoder (i.e.only in 22% of the entire block time for one
block). During the other 78% of the execution time, the remaining operations process
the data that enter SB but are not required at that given moment, generating unnecessary
switching in case of the non-application of the low-power techniques. As one may notice,
there is a reduction of approximately 13% in the power consumption measured by the use
of LP-SB.

Timing analysis was also performed for LP-SB and BL-SB. Table 2 also presents
the maximum frequency results achieved by each one of them. LP-SB had a maximum
frequency 15.2% higher than BL-SB maximum frequency, which is the opposite of the
expected since LP-SB inserts more logic into the critical path of the architecture (i.e.,
an AND gate is used as Operand Isolation, and its application occurs for every input bit
of the adder). The possible explanation is that a more efficient synthesis was done due
the insertion of the AND into the design, constraining more logics at less space when
compared to BL-SB.

We have submitted the same workload for the AES solution purely in software
and our proposed AES co-design, to evaluate the performance increase by using the co-
design approach. For both versions, the analyses were done running both AES co-design
versions on the chosen FPGA device. Three analyses were made by varying the number
of blocks to be coded by the AES algorithm. Three executions were performed for each
block size. Table 3 shows the average runtime results for the tests run.

As the runtime data presented, the co-design version performs the same operation
44.15-times faster on average comparing to the software version. This result depicts
a considerable increase in performance for the co-design version. Figure 9 shows a
logarithmic scale graph of the mentioned results.

Table 4 presents some comparison among related works. The first comparison
is regarding which AES operations execute in the hardware of the co-design approach.
In [Lin et al. 2009] and [C. T. O. Otero and Manohar 2015], many different combinations
of AES operations divisions between software and hardware were reported. Hence, we
are considering only the best-case option proposed by the works above. The speed-
up of LP-SB co-design is considerable and is within the gains achieved by others co-
designs using the different AES co-design partitions. The method of validation and
speed-up measurements vary according to each related work, where [Wang et al. 2015]

X Computer on the Beach 702 



Table 4. Comparisons among related aes co-designs works

Designs [Wang et al. 2015] [Lin et al. 2009] [Otero et al. 2015] LP-SB
AES Operations in hardware MC AK + SR + MC SB + AK+ MC SB
Speedup 9.78X 67.7X 29X 44.15X
Validation Methods RTL FPGA ASIC FPGA

Figure 9. Execution time for different block amounts under AES

has used an RTL level-simulation for its results, our LP-SB and [Lin et al. 2009] used
an FPGA platform with Nios II softcore processor, along with the hardware AES
operations. In [C. T. O. Otero and Manohar 2015], the authors have used hard-core
processors (ULSNAP and MSP430), along with ASIC versions of the chosen AES steps
to be ported to the accelerators.

Finally, only LP-SB and [C. T. O. Otero and Manohar 2015] propose a low-power
approach, where [C. T. O. Otero and Manohar 2015] utilizes Power-Gating for when
the AES hardware operations are idle (i.e., reduction of static power consumption),
with significant reduction especially for their AES hardware-only version. Our work
implements both Operand Isolation and Clock Gating techniques for the critical power-
consuming operation of AES (i.e., the SB step [C. T. O. Otero and Manohar 2015]),
achieving significant reduction on dynamic power consumption for the AES co-design,
but also is a potential solution for a full- hardware AES design.

7. Conclusion
This work has presented a low-power proposal for an AES co-design, considering
the power-critical operation of the cipher algorithm, named LP-SB. Two low-power
techniques were inserted into the LP-SB hardware block, to avoid unnecessary switching
while the mentioned block has to wait for incoming data from the rest of AES, running on
the software. Gate-level simulation results have achieved around 13% of dynamic power
reduction when compared to the baseline version without the low-power techniques. The
low-power proposal, even if done focusing on a co-design AES, can be further used on a
full-hardware AES solution.

Finally, the designed AES co-design has accomplished around 44 times more
performance when compared to the software-only AES version, which is within the
estimated gain by using a co-design approach, as confirmed by AES co-design related
works, using different AES operations for the hardware-software partition.

X Computer on the Beach 703 



References
Altera. Intel HSL compiler. Available in: https://www.altera.com/products/design-

software/high-level-design/intel-hls-compiler/overview.html.

Altera. Niosii processor. Available in: https://www.altera.com/products/processors/design-
tools.html.

Altera. Platform designer (formerly qsys). Available in:
https://www.altera.com/products/design-software/fpga-design/quartus-
prime/features/qts-platform-designer.html.

C. T. O. Otero, J. T. and Manohar, R. (2015). Aes hardware-software co-design in wsn. In
21st IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC),
pages 85–92.

Correale, A. (1995). Overview of the power minimization techniques in the ibm powerpc
4xx embedded controllers. In International Symposium on Low Power Electronics
Design (ISLPED), pages 75–80.

Drimer, S., Güneysu, T., and Paar, C. (2008). Dsps, brams, and a pinch of logic: Extended
recipes for aes on fpgas. In International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 99–108.

Dworkin, M. J. (2001). Recommendation for block cipher modes of operation: Methods
and techniques. NIST.

Lin, J. K., Hsiao, C., and Jhan, C. H. (2009). Exploring hw/sw codesign of aes algorithm
using custom instructions. In IEEE 13th International Symposium on Consumers
Electronics (ICSE), pages 192–195.

Mangard, S., Aigner, M., and Dominikus, S. (2003). A highly regular and scalable aes
hardware architecture. In IEEE Transactions On Computer, volume 53, pages 483–
491.

NIST (2001). Advanced encryption standard(aes). FIPS PUBS.

Ravi, S., Raghunathan, A., Potlapally, N., and Sankaradass, M. (2002). System design
methodologies for a wireless security processing platform. In 39th Design Automation
Conference (DAC), pages 777–782.

Wang, J., Wang, W., Yang, J., Hu, Z., Han, J., and Zeng, X. (2015). Parallel
implementation of aes on 2.5d multicore platform with hardware software co-design.
In IEEE 11th International Conference on ASIC (ASICON), pages 1–4.

Wu, Q., Pedram, M., and Wu, X. (2000). Clock-gating and its applications to low-
power design of sequential circuits. IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, 47(3):415–420.

X Computer on the Beach 704 




