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ABSTRACT 
Games must engage players by keeping them in the game flow. To 
better define the game difficulty according to the player, Genetic 
Algorithms can be used. One of the interesting characteristics of 
Genetic Algorithm is that it is a non-deterministic algorithm. For the 
player’s vision, it means that enemies are unpredictable. By not 
knowing which NPCs he will face, the gameplay turns more 
interesting. Another amusing factor for gaming is its adaptability, 
causing NPCs to slowly struggle to find a way to beat the player. These 
two characteristics make Genetic Algorithms good tools to make 
games more entertaining. This paper aims to demonstrate this 
adaptation capability in the Survival Shooter, developed by Unity 
enterprise and modified by the author for the algorithm 
implementation. As result, it shows that players could stay in the game 
flow while playing against genetically modified enemies. 

KEYWORDS 
survival shooter, Genetic Algorithms, Unity, game, adaptation, 
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1 INTRODUCTION 
Artificial intelligence has been present in digital games development 
since - at least - the 40’s. At this time a mathematician called Raymond 
Redheffer developed a computerized version of Nim, in which an 
artificial intelligence played against the player [8]. Those days, the 
computer used to do only mathematical instructions and discrete logic, 
but these first NPC were very important in the evolution of games for 
the development of new Artificial Intelligence. 

Evolutionary Computing is a part of AI in which computers aim to 
emulate nature’s evolutionary behavior. When an intention to carry out 
a simulation of it, Genetic Algorithms are usually the answer. They are 
based on the natural selection for species’ adaptation that is used in its 
execution. Its operation follows around some Darwinist concepts 
focused on the evolution and environment adaptation theory [2]. 

The purpose of these algorithms is to be adapted to the 
environment until it is possible to survive the competition within it. 
This evolution or adaptation of the individuals is given through the 
occurrence of crossovers and mutations amongst the population, which 
in turn is evaluated according to its fitting to the environment [1]. 

This paper demonstrates the effectiveness of this technique in 
survival games where the player fights a population of Non-Playable 
Characters (NPCs) which are controlled by the computer. As the main 
topic of this paper, a modified version of the Survival Shooter game, 
developed by Unity Technologies, was used. 

In this game, the character - controlled by the player - is placed in 
an environment (map), where he must survive to countless hordes of 
enemies fighting him. The player's score is calculated by the number 
of hordes he survives (by eliminating all enemies), and the time he 
takes to achieve these goals. 

Each enemy has the ability to make decisions regarding their 
actions and moves. These decisions (defined in their DNA here 
represented as parameters) are based on information related to the 
environment in which the character is located. The positions and 
actions of the players and their enemies', as well as the character’s 
intrinsic attributes, such as its current health points or items, are 
available for usage. 

While playing, these individuals are able to make decisions based 
on the moment they are “living”. They can fight the player by using 
different weapons and abilities or interact with other NPCs for support. 
In addition, he may choose to run away from the player by reaching a 
critical damage status. 

Due to the possibility of configuring several parameters for the 
algorithm, many comparisons were made between these possibilities 
in order to obtain the best individual’s performance in the game. 
Therefore, the performance of the algorithm was tested by using real 
players. 

2 Genetic Algorithms 
The first computational model of Genetic Algorithms was developed 
by John Holland [4], who at the time, did a study on the evolutionary 
processes of nature [5]. This model, described in Figure 1, can be 
divided into four stages: Initial Population, Selection, Crossover and 
Mutation. After the creation of the new population, the cycle starts over 
again. 
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Figure 1: Genetic Algorithm Steps 

2.1 Former Population 
The creation of the initial population is based on random 
chromosomes, seeking to fill the search space as widely as possible. 
This population must be, among all the others, the most heterogeneous. 

When creating a new individual, its genes are defined as presented 
in Table 1. 

Gene Values Description 
Appearance 0-2 bunny, bear or elephant 

Weapon 0-4
punch, flamethrower, missile 

launch, bomb, thunder 

Range 1.5-15 
distance between the NPC and its 

target 
Health Points 30-500 character’s life 

Damage 1-20 character’s attack damage 

Attack Speed 0.5-2 
The lower the value, the faster the 

attack 

Movement Speed 1-5
The reference value is 3 (player 

speed) 
Healer 0;1 1 is healer, 0 is not 

Run away 0;1 1 run away with 25% of health 
Accuracy 1-100 chance to hit target 

Table 1: Genes 

In games, in order to guarantee the diversity of the population, it is 
common to select an initial population beforehand, ensuring that it 
spreads satisfactorily through the search spectrum of the algorithm. So 
players do not get frustrated in the first hordes, in addition to allowing 
a greater chance of adaptation to the player's game method [6]. 

2.2 Selection 
For adapted individuals’ selection to compose the new population, 
three main methods are used: tournament, roulette, and cut. This 
selection is related to the survival concepts of the fittest subjects, 
described by the theory of evolution [2,3]. 

The chosen selection algorithm strongly impacts the application’s 
final result. As this paper aims to do a genetic algorithms’ study in 
games, all of the selection methods were applied, to make it possible 
to choose the best one before the game begins. 

Table 2 shows a comparison between the selection methods used 
(applied in this paper), as well as the way in which each one impacts 
the final result of the populations. 

Method Features 

Cut 
High selective pressure, only the best individuals 

will be selected 

Roulette 
Low selective pressure, allows individuals with low 

fitness to be selected 
Tournament The variation between previous methods 

Table 2: Selection Methods 

The game in discussion allows - when selecting the total 
population size - to define the method of selection and cut range (how 
many will be selected), which is usually given by a quarter of the initial 
amount. 

To define each individual’s score, a subject’s fitness test is used. 
This test is calculated just after the death of each NPC. This 
calculation, in turn, is based on three main health-related 
characteristics of the individual, which are expressed in Table 3. 

Metrics Default Requirements 

Survival 10 Escaping and being healed by an ally 

Damage 
Health 0,4 

For every point of damage/healing dealt 
with the target 

Time Alive 0,2 For every second lived 

Table 3: Metrics for testing 

These points are used as the basis for the fitness calculation, which 
will be given by a normalized value and distributed in the interval 
between the real numbers 0.9 and 1.1 [5]. The normalization of this 
fitness is described by the equation: 

𝐸(𝑖, 𝑡) = 𝑀𝑖𝑛 + (𝑀𝑎𝑥 −𝑀𝑖𝑛) ∗
𝑟𝑎𝑛𝑘(𝑖, 𝑡) − 1

𝑁 − 1

Equation 1: Fitness Standardization 

Where: (I) Min is the value of the evaluation that will be assigned 
to the worst ranked individual; (II) Max is the value of the evaluation 
that will be assigned to the best-ranked individual; (III) N is the 
number of individuals in the population; and (IV) Rank (i, t) is the 
ranking of individual i in the population kept by the algorithm in 
generation t. 

2.3 Crossover 
After the best individuals of the population have been selected, the 
crossover process begins. In this stage the exchange of genes occurs 
between the selected individuals, seeking to generate new individuals 
that are variations of the winners. 

There are two most common methods for this cross: Simple 
Arrangement and Same Species. The arrangement method consists of 
crossing the individuals two by two, based on the order in which they 
appear. This simple crossover between the parents is based on the 
exchange of chromosomes for the generation of DNA, as it happens 
with living beings. An example of its operation in the game can be seen 
in Figure 2. 
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Figure 2: Simple Crossover 

The number of individuals generated by this technique grows 
exponentially as shown in Equation 2, where n is the number of 
individuals selected. Therefore, in cases where the selected population 
is very large, it was chosen to eliminate surplus individuals in a random 
manner. 

𝐴4,5 = 𝑛² − 𝑛 

Equation 2: Number of individuals 

Much like the Simple Arrangement method, the Same Species 
method adds a limitation to these arrangements, making only 
individuals with the same appearance gene to crossover. In this mode, 
it is frequent the occurrence of individuals without pair, which in turn 
results in the death of the same and disappearance of the species. For 
this reason, the method is considered ineffective in experiments where 
the selected population is small. 

2.4 Mutation 
After crossover, there is a chance whereas the new individual 
undergoes a mutation. If this happens, he will have new information, 
which does not come from any of its parents. This mutation occurs in 
a random manner and it must have a low probability, since otherwise, 
the behavior of the population will become very random and non-
adaptive [5]. 

The initial mutation rate was 5%, but two rules were implemented 
that could change it during execution. These rules have as main factors 
of influence the difficulty that the player demonstrates, and the 
domination of some species. 

The difficulty is set based on the average damage taken by the 
player during the last 3 rounds. If this damage is less than 25% of the 
player's life, then it is considered that the hordes are very easy. If that 
percentage reaches above 75%, it is considered difficult. And values 
between 25% and 75% are considered average. 

Depending on the options chosen by the player, it is possible to 
increase or decrease the mutation rate according to the relative 
difficulty to generate more heterogeneous populations. 

The domination of a species occurs when more than 80% of the 
individuals have same appearance (Rabbit, Bear or Elephant). This 
indicates a convergence of the algorithm and that the evolution of 
individuals tends to stabilize. In this case, it is also possible to 
temporarily increase the mutation rate of this gene to thereby obtain 
individuals of different species. 

The system still allows the player to choose the number of genes 
that will be modified if a mutation occurs, allowing mutations to 
generate higher or lower genetic variability. 

3 Survival Shooter 
The game referred by this article was developed by Unity company 
and consists of a character controlled by the player who must survive 
to endless hordes of enemies. To defend itself, the player relies on a 
machine gun with unlimited ammunition. The game environment 
consists of a children's room in which the character, who is a baby, 
must fight against rabbits, bears and plush elephants that attack him 
constantly. The game ends only after the player's death. 

The original version was modified to allow the inclusion of the 
Genetic Algorithm and increase the variety of enemies. Figure 3 shows 
the original version. 

Figure 3: Survival Shooter original version 

4 Performance 
In order to analyze the performance of the algorithm, different 
configurations were defined to find the one that best suits the game. 
Table 4 shows some of the settings applied in the algorithm, relating 
the selection method to the population, and showing the average fitness 
of the population. 

Config Average Fitness 
Roulette 20 20.57 
Roulette 60 12.56 
Roulette 80 15.22 
Roulette 120 10.95 

Cut 20 29.05 
Cut 60 28.02 
Cut 80 62.45 
Cut 120 54.19 

Tournament 20 21.16 
Tournament 60 15.6 
Tournament 80 15.22 
Tournament 120 17.06 

Table 4: Fitness by settings 

The average fitness represents in a proportional way the average 
performance of the individuals in the round. By analyzing each 
selection method separately, it is possible to see that even the worst 
results of the Cut method are still better than the ones best adapted 
using Tournament and Roulette, as shown in Figure 4. 
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Figure 4: Comparison between selection methods 

This behavior is due to the fact that the selection by the Cut is the 
most demanding and will always pass only the most adapted 
individuals to the next generations. In addition, it is well known that 
the Roulette and Tournament methods tend to take a larger number of 
generations to find optimal competitors. In contrast, they tend to fall 
into local optima with a lower frequency than the Cut method. 

Based on these preliminary results and considering that games 
must obtain results in a short space of time, new tests were done. They, 
in turn, are restricted to experiments of settings with the Cut method, 
whose configurations can be verified in Table 5. 

Population Selected Population Selected 
20 5 80 40 
20 10 80 50 
20 15 80 60 
60 15 120 10 
60 20 120 20 
60 30 120 30 
60 45 120 40 
80 10 120 60 
80 20 120 80 
80 30 
Table 5: Different settings for the cut selection method 

After running these new experiments, some results of the 
algorithm were selected from settings that stood out. These results can 
be seen in Figure 5. 

Figure 5: Best configurations for the cut selection method 

The two configurations with the worst adaptation results were: one 
with a population of 80 individuals of whom, 60 were selected as 
survivors, and other, with 20 individuals from which, 10 were selected. 

The configurations with 80 individuals were the most varied in 
general, spreading all along the search space, according to the number 
of individuals selected at each generation. The cut to the best 20 
individuals, for example, even though it does not show a good final 
adaptation, shows excellent results in the generations between 15 and 
20. 

The configurations with 80 individuals cut to the 30 best 
individuals and 120 individuals with the cut positioned among the first 
20 have the best results obtained in the experiments. Both have good 
results, but different characteristics. While the Cut 80/30 method has 
almost linear performance and few significant changes in fitness 
averages, the Cut 120/20 has had several ups and downs over the 
generations. 

The behavior of the chart may have been caused by the small 
number of individuals selected, which tends to result in loss of genetic 
diversity. With this loss of diversity, a premature convergence of 
individuals occurs, which leads to an increase in the mutation rate of 
the algorithm. In this way, the next generations become more random 
and fall again. 

When it comes to gaming applications, however, a configuration 
is needed that will quickly achieve satisfactory values. Therefore, it 
was decided to use in the game the configuration with 120 individuals 
of which the best 20 are selected. In this way, the game tends to be 
more challenging for the player, even for the first runs. 

5 Experiments 
The experiments involved 18 players - with previous experience in this 
kind of games - whom after taking the test of the game, answered a 
questionnaire about it. 

These participants played until their main character died. In 
relation to the number of hordes each one survived (which can be seen 
in Figure 6), the behavior approaches a normality curve, with the 
average number of rounds surviving about 12. 
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Figure 6: Players dead by run 

As the hordes are composed of only 20 individuals, the generations 
go through every 6 hordes. This means that most players have been 
defeated by members of the first two generations of the algorithm. And 
even the player who survived the highest number of rounds, was 
defeated by individuals of the sixth generation of the algorithm. Still, 
on the performance of the algorithm, Figure 7 demonstrates the test 
time (also playing time) of each participant. 

Figure 7: Played time 

In this case scenario, it is noticed that on average the players 
remained alive for 20 minutes, which leads to an average time of one 
and a half minutes per horde (considering the average of 12 hordes). 
One of the players survived the game for only four and a half minutes, 
ultimately dying in the second round. Firstly, it was assumed that this 
situation was due to the fact that the initial population (which is 
generated randomly) had been very fit during this execution. 

By conducting a more detailed analysis of the execution however, 
it was possible to discover that unlike the initial hypothesis, the first 
population generated in this execution was slightly below the initial 
fitness average. The player had died prematurely in the second round 
for reasons of mechanics of the game. Not having understood the 
operation of the weapon grenade, he ended up committing suicide. 

On the evolution of the genes, a standardized analysis was made 
where the algorithm fitness is compared with the characteristics of the 
individuals. Figure 8 demonstrates this comparison for one of the tests 
performed with players. 

Figure 8: Evolution of individuals characteristics in Player A 
match 

It is possible to perceive that some characteristics behave in a way 
directly proportional to the fitness, while others, in an inverse way. 
Thus, as the algorithm evolves, the parameters define the enemy 
attack’s damage, distance and speed. In contrast, healers and enemy’s 
movement speed decreases. The chart presents an interesting behavior 
because it intuitively should be increasing. This expected behavior can 
be seen in Figure 9. 

Figure 9: Evolution of individuals characteristics in player B 
match 

As in Figure 8, the characteristics of the individuals in Figure 9 are 
some direct and others inversely proportional to the fitness level 
calculated by the genetic algorithm. In this experiment, however, it is 
possible to perceive a greater convergence of the characteristics in the 
second generation. With the exception of the Speed gene, all of them 
had a considerable increase in the second generation. 

This made player B grow much faster than A, as it can be seen in 
Figure 10. 
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Figure 10: Evolution enemies’ performance in different 
executions 

As predicted in the settings tests, a large population with an elite 
selection demonstrated accelerated growth in executions, which 
allowed players  have an overall growing game difficulty experience, 
which makes it more interesting to players [7]. 

When asked about the difficulty rate in defeating the enemies 
(Figure 11), most players replied the difficulty of the game as normal. 

Figure 11: Difficulty in defeating enemies according to players 

No player considered the game as Very Hard, and only one 
considered it Very Easy. This tendency to Normal difficulty indicates 
a certain flow in the gameplay, which in turn meets the expected result 
in relation to the gaming experience. The goal is to make the game 
more challenging, but not frustrating. 

In relation to the change in difficulty of the game, Figure 12 shows 
the impressions of the players. 

Figure 12: Difficulty evolution 

Even with the algorithm evolving few generations for most 
players, as the adaptation is accelerated, players might have noticed a 
progressive increase in the difficulty level of the game. Although no 
player has defined the changes in difficulty of the game as abrupt, some 
players did not realize this change. It is believed that these are the ones 
who have not passed the first generation of enemies and thus have 
fought only against randomly generated enemies. 

6 Conclusions 
The Genetic Algorithm implemented in the Survival Shooter game is 
a good alternative for adjustment of difficulty in games of this kind, as 
it is able to offer a dynamic and challenging environment to the 
players. Although, other alternatives like NEAT algorithms (with 
Genetic Algorithms and Neural Networks), should perform better. 

The players were able to notice the adaptability of the game 
difficulty. Unfortunately, the research did not count on the 
participation of inexperienced players, and it is not possible to affirm 
the adaptability of the algorithm to this public. 
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