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Abstract. Notification Oriented Paradigm (NOP) has been proposed as a new
way to design software that is more efficient, decoupled, and with better perfor-
mance than other paradigms. NOP is built based on a well-defined set of enti-
ties that interact by means of notifications. The way those entities are designed
enables a declarative and rule-based programming model that is suitable for
distributed systems. This paper introduces a method to write distributed NOP
programs that maintains the same characteristics of performance and cohesion
that its local counterpart has. The method is presented with two case studies
that have their design and performance compared to equivalent programs writ-
ten with traditional models and paradigms. The results show that distributed
NOP programs behave correctly and, beyond the distribution, present similar
benefits as their single instance counterparts.

1. Introduction
Recently, a new programming paradigm, called Notification Oriented Paradigm (NOP),
was proposed in order to solve software development issues in terms of ease compo-
sition of optimized and distributable code [Simão and Stadzisz 2009]. The NOP ba-
sis was initially proposed by J. M. Simão as a manufacturing discrete-control solution
[Simão 2005]. This solution was evolved as a general discrete-control solution and then
as a new inference-engine solution, finally achieving the form of a new programming
paradigm [Simão et al. 2012]. The essence of NOP is its inference process based on
small, smart, and decoupled collaborative factual-executional entities and logical-causal
entities that interact by means of precise notifications. NOP enables the development and
execution of software in a way that keeps the main advantages of both declarative pro-
gramming (i.e. higher causal abstraction and organization) and imperative programming
(i.e. reusability, flexibility and structural abstraction). [Simão and Stadzisz 2009].

Imperative programming paradigms like Procedural or Object Oriented motivated
the creation of distributed programming paradigms counterparts like RPC and Distributed
Objects [Kendall et al. 1994]. On the other hand, declarative and rule-based paradigms
proved difficult to be adapted to a distributed environment due to issues such as the high
coupling between entities [Simão and Stadzisz 2009]. NOP solves most of those issues
while still maintaining a declarative rule-based programming model. This makes NOP a
suitable choice for distributed systems experiments.

Supported by NOP’s decoupled structure, its creators claim that NOP programs
can be seamlessly distributed across processes or even networks. However, by this date
little progress had been made to demonstrate NOP in a distributed systems context and
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Figure 1. Rule example (a) and NOP UML class diagram (b) [Simão et al. 2012].

none has been published yet. This paper presents a method to write distributed NOP pro-
grams that still maintains the main benefits and properties of the paradigm. This paper
also demonstrates the use of NOP in distributed systems by means of two case studies.
Those had their results analyzed in terms of correctness and computational resource us-
age.

The paper is structured as follows: Section 2 presents a background about NOP
and its main characteristics. Section 3 discusses how NOP would fit in a distributed
systems context and proposes a method for writing distributed NOP programs. Section
4 presents two case studies that were conducted using the proposed method and presents
their results. Section 5 presents related and future work. Finally, Section 6 presents
concluding remarks.

2. Notification Oriented Paradigm (NOP)
The Notification Oriented Paradigm (NOP) introduces a new concept to conceive, con-
struct, and execute software applications. NOP is based upon the concept of small, smart,
and decoupled entities that collaborate by means of precise notifications to carry out the
software inference [Simão and Stadzisz 2009]. This allows enhancing software applica-
tions performance and potentially makes easier to compose software, both non-distributed
and distributed ones [Simão et al. 2012].

2.1. NOP Structural View
NOP causal expressions are represented by common causal rules, which are naturally
understood by programmers of current paradigms. However, each rule is technically en-
closed in a special computational-entity called Rule. An example of Rule Entity content is
illustrated in Figure 1a. This Rule structures and infers the causal knowledge of an appli-
cation that controls an air conditioning system based on information provided by various
sensors.

Structurally, a Rule has two parts, namely a Condition and an Action, as illustrated
by the UML class diagram in Figure 1b. Both parts are entities that work together to
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handle the causal knowledge of the Rule. The Condition is the decisional, or logical-
causal part, whereas the Action is the execution part of the Rule.

NOP factual elements are represented by a special type of entity called “Fact Base
Element” (FBE). An FBE includes a set of attributes. Each attribute is represented by
another special type of entity called Attribute, such as TemperatureSensor and Presence-
Sensor (see Figure 1a).

Attributes states are evaluated in the Conditions of Rules by associated entities
called Premises. In the example, the Condition of the Rule is associated to three Premises,
which verify the state of FBE Attributes as follows: (a) Is the Temperature higher than 25
degrees? (b) Are there people in the room? (c) Is the air conditioner turned on?

When each Premise of a Rule Condition is in true state, which is concluded by
means of a given inference process, the Rule becomes true and can activate its Action
that is composed of special-entities called Instigations. In the considered Rule, the Action
contains only one Instigation that turns the air conditioning system on.

In fact, Instigations are linked to and instigate the execution of Methods, which
are another special-entity of FBE. Each Method allows executing services of its FBE.
Generally, the call of an FBE Method changes one or more FBE Attribute states, feeding
the inference process.

2.2. NOP Inference Mechanism

The inference mechanism of NOP is innovative since the Rules have their inference car-
ried out by reactive collaboration of its notifier entities [Simão and Stadzisz 2009]. The
collaboration happens as follows: for each change in an Attribute state of an FBE, the
state evaluation occurs only in the related and pertinent Premises and then in related and
pertinent Conditions of Rules by means of punctual notifications between them.

In order to explain the Notification Oriented Inference, it is necessary to explain
the Premise structure. Each Premise represents a Boolean value about one or even two
Attribute states, which justify its structure: (i) a reference to an Attribute discrete value,
named as Reference, that is received by notification; (ii) a logical operator, named as
Operator; and (iii) another value named as Value that can be a constant or even a discrete
value of other referenced Attribute.

A Premise executes a logical calculation when it receives notification of one or
even two Attributes (i.e. Reference and Value). This calculation is carried out by com-
paring the Reference with the Value, via the Operator. In a similar manner, a Premise
collaborates with the causal evaluation of a Condition. If the Boolean value of a notified
Premise is changed, then this Premise notifies the related Condition set.

Therefore, each notified Condition calculates their Boolean value by the conjunc-
tion of Premises values. When all Premises of a Condition are satisfied, the Condition is
also satisfied and notifies the respective Rule to execute.

An important point about NOP collaborative entities is that each notifier (i.e. At-
tributes) registers its client (i.e. Premises) in its creation time. For instance, when a
Premise is created and makes reference to an Attribute, this attribute automatically in-
cludes that Premise in its internal set of entities to be notified when its state changes.
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3. Distributed Systems and NOP

Many different distributed computing models were proposed over the last decades
(message passing in the 1970’s [Cook 1980], remote procedures in the 1980’s
[Birrell and Nelson 1984], distributed objects in the 1990’s and web services in the
2000’s). Most of the efforts in creating those models were motivated by the need
to match them more closely to the programming paradigm in vogue at the time
[Kendall et al. 1994]. With NOP, it is natural that new distributed programming tech-
niques emerge to address distributed systems challenges in a way that remains true to
NOP’s fundamentals.

NOP creators claim that NOP-based systems can be fully distributed among pro-
cesses and nodes in a computer network [Simão et al. 2012]. This claim is backed by the
highly decoupled object model that NOP is based on and the notion of Distributed Ob-
jects popularized by middlewares such as CORBA and Java RMI. In NOP creators vision,
an entire NOP program would have its entities distributed across a set of network nodes.
These entities would then collaborate in a distributed object fashion to perform the task
of a NOP program.

NOP’s parallelism capabilities had been demonstrated in single instance systems
[Belmonte et al. 2016]. However, distribution of computations across processes in a same
machine is fundamentally different than distribution across a set of machines connected
though a network [Kendall et al. 1994]. The main differences are that memory access is
not shared and network environments introduce the possibility of partial failures. Tech-
niques like distributed objects, which helped to foment NOP’s distribution capabilities
claims, tried to abstract the network complexities from the programmer of an object ori-
ented system by treating remote objects as if they were local. Even though the distributed
objects approach to distribute NOP programs is possible, it would inherit all problems
associated with the technique.

We argue that NOP distribution efforts should not try to partition programs in a
way that each node holds different types of NOP entities that must act together to perform
a task. This would generate programs difficult to reason about and tolerate partial failures.
Instead, we propose that complete NOP processes should be able to communicate with
each other in a way that is adherent to NOP’s rule-based mechanisms. By “complete NOP
processes” we mean programs with well-defined responsibilities that make use of all of
NOP’s entities. To achieve this, a careful consideration of NOP’s entity model should
be made to identify points where distribution is advantageous. Afterwards the model
should be extended to support distribution. In all cases, distribution points should be
explicitly defined by the developer. This way all the peculiarities of network programming
like latency, non-shared memory access, and concurrency can be more easily taken into
consideration.

In this work we present an extension to NOP that makes it possible to NOP pro-
cesses to communicate with each other while still maintaining a pure declarative rule-
based programming model. This is achieved by the introduction of the concept of Dis-
tributed Attributes, which are a specialized type of NOP Attribute that is able to share its
state with other NOP processes.

IX Computer on the Beach 113 



Figure 2. Distributed Attribute Model Representation

3.1. Distributed Attribute Model

A Distributed Attribute is a new type of NOP Attribute that can be shared among many
NOP processes. A Distributed Attribute interact with other NOP’s entities in the same
way as a normal NOP Attribute; it can be part of Premises and has its state changed by
Methods. However, there are two main differences between a distributed attribute and
a normal one. The first is that whenever a Distributed Attribute has its state changed,
it publishes a notification message with the new state to the network. The second is that
upon initialization, the Distributed Attribute sets up a network listener that reads messages
with new states. Whenever a message arrives, the Distributed Attribute updates itself with
the new state.

The idea is that a Distributed Attribute can have its state replicated among any
number of distinct NOP processes connected by the same network. An example scenario
illustrated by Figure 2 shows three NOP processes sharing the Distributed Attributes A,
B, and C. We can see that the Distributed Attribute C is shared among all three processes,
while Distributed Attributes A and B are only shared between two processes.

The way the Distributed Attribute is designed allows a multi-directional state
transfer between any number of attributes. This can certainly generate concurrency prob-
lems that would lead to inconsistent states between programs. This is a classic dis-
tributed transaction problem with solutions [Gray 1978, Lamport 1998] and limitations
[Fischer et al. 1985]. We do not impose any specific solution and leave such details to the
implementation.

4. Distributed Attribute Model Validation
To validate the Distributed Attribute, an implementation of the proposed model was made
and two case study programs were built on top of it. The Distributed Attribute model
was implemented in the Java NOP materialization. The first case study is an electronic
gate simulator. It is a usual problem that has been a case study for NOP application in
some related works [Xavier 2014]. The second is the distributed transaction protocol Two
Phase Commit [Gray 1978].

The two case study programs were compared to applications solving the same
problem in the traditional imperative object oriented paradigm using remote procedure
calls [Birrell and Nelson 1984] as the distributed programming model. Both paradigms
are widely used in industrial and scientific applications alike. The results were verified in
terms of correctness of the applications and by the network efficiency, measured by the
number of messages exchanged in both applications. The purpose of the verification is to
measure the overhead generated by NOP in a distributed setting.
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4.1. Distributed Attribute Implementation

NOP’s usage has been made primarily by the use of NOP Frameworks. These are im-
plementations of NOP’s concepts in different programming languages that provide an
Application Programming Interface (API) to programmers. The first NOP framework
was created in C++ and, subsequently, ported to Java and C# languages. For the imple-
mentation of the Distributed Attribute, we chose the Java Framework.

The Distributed Attribute class was implemented by extending the Attribute class
already present in the framework. This new class provides a constructor where a network
address is required as a parameter. Upon initialization, an instance of the Distributed At-
tribute class starts a network listener on the given address in a separate thread. Whenever
the state of the Attribute is changed, it serializes its state and sends it to the provided
network address. Whenever a notification message arrives, it updates its internal state.

The network communication was implemented by using UDP multicast. Every
Distributed Attribute registers itself in a unique multicast address and listens to messages
sent to this address for the entire program execution. When a new message is received,
the Attribute updates its own state and propagate notifications to the Premises running in
the same local process. When an Attribute has its state changed by a local NOP Method,
it sends its new state over its multicast group. The solution ensures that participants
only receive messages regarding Attributes that they explicitly registered interest. The
implementation can be easily modified to support TCP broadcast or even TCP unicast.
Multicast was chosen to guarantee maximum message delivery efficiency in local area
networks.

4.2. Case Study 1 - Electronic Gate

The first case study comprises a system that simulates the software that runs in an elec-
tronic gate and its remote controls. The system is comprised of two distinct types of
processes: one that runs in the gate and one that runs in the remote controls. The system
has a basic functionality of changing the gate state every time one of the remote controls
has its unique button pressed. The gate states follow the state diagram shown in Figure 3.

The NOP implementation of the remote control software is comprised of an FBE
with a single Distributed Attribute buttonPressed with two possible values representing
the state of the button. No other NOP entities were necessary for this program. The NOP
implementation of the gate software is comprised of one FBE with two Attributes, one
being the distributed buttonPressed that is shared with the remote control program, and a
non-distributed one representing the state of the gate. The gate program also has 6 Rules
and Conditions (one for each possible gate state), three Actions, Instigations, and Methods
(to stop, open, and close the gate) and seven Premises (button pressed, gate opened, gate
closed, gate stopped opening, gate stopped closing, gate opening, gate closing).

One interesting property of this particular implementation is that it can handle
multiple instances of both programs running concurrently and still behave correctly. This
would allow for example a redundant gate control operation to handle eventual failures.

The RPC implementation for the electronic gate system is also comprised of two
types of processes, one for the remote control(s) and one for the gate. The Gate program
exposes an interface with a single method changeState. The remote control program acts
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Figure 3. State diagram for the elec-
tronic gate Figure 4. Two phase commit se-

quence diagram

as a client to that interface. Every time the remote control has its button pressed, a remote
invocation is made to the gate’s program exposed method, changing its state accordingly.

The results were measured in terms of the quantity of messages exchanged by the
two programs. The distributed NOP implementation requires 2N messages and the RPC
N messages, where N is the amount of times the remote control button is pressed. The
increased number of messages necessary in the distributed NOP implementation is due to
the way Notification works in NOP. Every time an Attribute state changes, the Premises
interested in that Attribute have to be notified. As the Distributed Attribute passes for two
state transitions in single press (NOTPRESSED → PRESSED → NOTPRESSED), at least
two messages have to be sent over the network.

It is worth mentioning that traditional RPC implementations do not support one
procedure call to be made in multiple hosts with the same method exposed. Therefore,
the redundancy feature supported by the distributed NOP implementation would require
more messages to be exchanged in the RPC implementation.

4.3. Case Study 2 - Two-Phase Commit

The two-phase commit is a protocol that enables atomic distributed transactions in a sys-
tem with an arbitrary number of participants. It achieves that by using a coordination
mechanism where one single participant coordinates a voting and a decision phase. In the
voting phase all the participants vote on whether or not they could process the transaction.
In this phase all the participants try to persist the transaction value in an intermediary stor-
age. In the decision phase the coordinator gathers all the votes, decides if the transaction
must commit or abort and communicates the decision to all the participants. A sequence
diagram to commit a transaction is shown in Figure 4, but implementations can vary.

The NOP implementation for the two-phase commit involves two programs, one
for the coordinator and one for the participants or voters. All the communication between
the coordinator and the participants occurs by means of Distributed Attributes. Each par-
ticipant has one Distributed Attribute in an unique address to communicate their vote.
The coordinator has to know the address of all Attributes before it can begin a new trans-
action. The coordinator maintains Distributed Attributes shared with all the participants
to indicate the content of a transaction, the transaction phase, and the final decision. The
transition from the voting phase to the decision phase is triggered by a NOP Rule that
runs on the coordinator process. This Rule is activated when all the participants vote.
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Immediately after the voting phase, the coordinator issues a decision in the form of a Dis-
tributed Attribute state change. This Attribute triggers Rules to send commit or abort in
the participants.

To handle multiple concurrent transactions, the NOP implementation has to use
N∗M addresses where N is the number of participants and M is the number of concurrent
transactions. For some applications this might be considered a drawback.

The RPC implementation of the two-phase commit protocol involves interfaces
with two exposed methods for the coordinator (haveCommited and getDecision), and
three for the participants (canCommit, doCommit, and doAbort) [Coulouris et al. 2011].
This particular implementation behaves in a way that participants never communicate
state changes in a proactive way. This behavior is the opposite of a NOP application
behavior, where state changes are instantly communicated to the interested resources by
means of notifications.

As the two phase commit is a protocol designed to tolerate various levels of suc-
cessive failures, the best case scenario is used to measure performance. Considering N
participants in a distributed transaction, the distributed NOP implementation requires at
least N + 3 messages to complete one transaction, the RPC implementation requires 3N
messages. The advantage in NOP is due to the communication strategy and NOP’s proac-
tive notification mechanism.

4.4. Results and Discussion

From the correctness point of view, both distributed NOP programs behaved properly.
The distributed NOP programs produced the same output as their RPC-based counter-
parts. From the performance point of view, the two case studies performed different.
The distributed NOP electronic gate program exchanged more messages between the pro-
cesses than its RPC-based counterpart. On the other hand, the distributed NOP two-phase
commit exchanged less messages than its RPC-based counterpart.

The electronic gate is an example of a program that does not benefit from the
distributed attribute strategy. This scenario occurs because of the way Methods interact
with Attributes in NOP. For every state change of a distributed attribute A in a process P1
that triggers a Method in process P2, and this Method changes again the state of attribute
A, at least two messages are needed. In applications where network efficiency is critical,
this pattern has to be avoided whenever possible.

The two-phase commit case study showed that a rule-based program using noti-
fications can be more efficient than a distributed algorithm based in remote calls. It is
important to notice that the two-phase commit protocol can be implemented with a low
level message passing multicast approach that would have the same performance as the
NOP example. The main point here is that NOP does not add any overhead to the pro-
tocol like RPC does, in fact NOP enables a declarative implementation to have the same
performance achieved by a low level message passing implementation.

Apart from network resource usage, all the performance benefits from NOP are
carried to the distributed attribute implementation. Running a NOP program in a dis-
tributed way does not imply in extra logical evaluations being computed.
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5. Related and Future Work
Although the subject of declarative and rule-based distributed programming had some
contributions in the past, it still remains an open research area. Among the works
that made progress are Netlog [Grumbach and Wang 2010], a rule-based language
created to describe network protocols in a declarative manner. Similarly, Dedalus
[Alvaro et al. 2011] is a declarative language designed to specify distributed systems.
An extension of Dedalus, Distributed State Machine [Lobo et al. 2012] was introduced
to address some of Dedalus limitations regarding time management and improve on the
verification of programs created with the language. All those languages are based on Dat-
alog [Ullman 1984] and have a focus on the declarative design of network protocols. The
use cases presented for those languages are very different from the ones NOP has been
applied to. For this reason a direct comparison is not straight forward and is let for future
work.

As regards to other possible future work, developing more application examples
would help to further validate the applicability of the model. The comparison of NOP
and event-oriented paradigms was subject of recent work [Xavier 2014]. Comparing the
Distributed Attribute model with distributed event-oriented frameworks like the Actors
Model [Agha 1985] would bring more perspective to the comparisons and the model itself.

6. Conclusion
In this paper, we demonstrated that NOP can be applied to solve distributed systems
problems. The low coupling between NOPs entities enables NOP programs to act in
collaborative way in a distributed system context.

This paper introduced the Distributed Attribute concept, a new type of NOP At-
tribute that can coexist in multiple NOP programs. The Distributed Attribute enabled
NOP processes to communicate with each other in a concise way while keeping the dis-
tribution explicit to developers. Its implementation in the NOP Java framework and the
two case studies presented practical usages of distributed NOP applications.

NOP systems written using Distributed Attributes behaved correctly and produced
cohesive programs with well-established responsibilities that communicated seamlessly
in a distributed environment. The programs presented as case studies showed that the
use of rule-based programming paradigms like NOP are perfectly viable for building dis-
tributed applications. The network efficiency of distributed NOP programs when com-
pared with well-established distributed programming models showed that the declarative
aspect of NOP does not impose an overhead to the use of network resources.

It is believed that future implementations using the proposed solution will work
correctly based on the fact that NOP uses very standardized entities, in the form of factual-
executional and logical-causal notifier entities, which comprise now the Distributed At-
tribute.
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