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Abstract. The Protein Structure Prediction problem is currently one of the most
challenging open problems in Bioinformatics being a NP-Complete problem. In
this work, a Multistage Simulated Annealing (MSA) employing different levels of
detail for the potential energy function is applied using the Rosetta framework.
The backbone and centroid coordinates model is employed being the side chains
repacked at the end of the process. Experiments were conducted using four well-
known proteins with different degrees of complexity, namely: 1ZDD; 1CRN;
1ENH; 1AIL. The results obtained showed that MSA is able to find better energy
function values in all four proteins, and better RMSD in three of them.

1. Introduction
Proteins are macromolecules that several metabolic, structural and hormonal roles are
played them. The function of a protein is directly related to its three dimensional confor-
mation. Thus, by knowing the protein conformation can give insights on the roles that a
protein has in a organism, on the design of new drugs, and the better understanding of dis-
eases [Walsh 2002]. Each protein has a unique amino acid sequence, which can be used
to identify it. The process of determining a protein sequence, called protein sequencing,
is relatively cheap and very reliable. On the other hand, the process of determining the
protein structure native conformation usually involves x-ray crystallography or nuclear
magnetic resonance that are slow, error prone, and very expensive [Drenth 2007].

Computational modeling of proteins to determine their native structure confor-
mations is known as Protein Structure Prediction and currently it is considered an open
problem in computer science and bioinformatics [Dorn et al. 2014]. The Protein Structure
Prediction (PSP) problem can be approached with different levels of abstraction in which
several of its models are considered to be NP-Complete problems [Guyeux et al. 2014].
Given the complexity of the energy landscape and the number of potential protein confor-
mations make infeasible the use of exact methods for solving the PSP problem. Thus, the
use of heuristics and metaheuristics become essential to handle the problem in a feasible
time. Some related work using Genetic Algorithms [Borguesan et al. 2015], Memetic Al-
gorithms [Garza-Fabre et al. 2016], Differential Evolution [Narloch and Parpinelli 2017],
and hybrid methods [Zhang et al. 2010] have been explored to solve the PSP problem.

The main goal of this work is to explore the PSP problem conformational space
at different levels of detail, starting with a coarse grained model and finishing with an
all atom configuration. The Rosetta framework provides the potential energy functions
and other problem specific routines, and the Simulated Annealing algorithm is employed
as optimizer to explore the conformational space considering the backbone and centroid
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coordinates model. At the end of the optimization process the side chains are repacked to
provide an all atom conformation. It is expected that the increasing levels of detail and
the use of more information about the search space will lead to better results.

The paper is structured as follows: Section 2 presents the theoretical background
relevant to this work, Section 3 describes the proposed method, Section 4 details the
experimentation, Section 5 shows the results obtained, and Section 6 presents the conclu-
sions and future work.

2. Theoretical Background

This section describes the theories and concepts that are relevant for a better understand-
ing of this work.

2.1. The Protein Structure Prediction Problem

A protein can have its structure analyzed at different levels. The first one is the primary
structure, which consists of the unique sequence that defines a protein. The secondary
structure consists of angle patterns that repeat themselves in the protein, forming reg-
ular shapes. The most common secondary structures are α-helices (helicoidal shapes),
β-sheets (planar shapes), and coils. The tertiary structure corresponds to the three di-
mensional structure of the protein, and it is also called the native conformation. The
quaternary structure are super structures composed of 2 or more proteins. Hence, the PSP
problem consists of finding the tertiary structure having the primary structure as input.

There are several protein models that can be utilized to computationally represent
a protein. They can be divided into two major classes: lattice and off-lattice models. The
lattice models bind the amino acids to a grid of points. This model is the simplest one
and can be approached using exact methods [Nunes et al. 2016]. The off-lattice models
are able to better represent the proteins since they have more degrees of freedom in space.
The most common off-lattice models are: Cα Coordinates, all heavy atoms coordinates,
backbone and centroid coordinates, backbone and side chain torsion angles, and all atoms
coordinates. The present work employs the backbone and centroid coordinates model and
is illustrated in Figure 1. Each amino acid contains 3 dihedral torsion angles for the back-
bone: φ, ψ and ω. The angles φ and ψ can assume any value in the range of [−180, 180].
The angle ω is most of the time close to 180 due to the planarity of the peptide bond but it
is possible to be at 0 degrees when the bond assumes a cis configuration. The side chain
Rgroup is amino-dependent and is clustered in a small region based on the amino acid type
and the secondary structure, representing a centroid.

The process of predicting the native conformation of a protein using only the pri-
mary structure as input is known as ab initio approach. When some other problem in-
formation, e.g. secondary structure information, rotamers, and fragments, are added to
the search process then we have a de novo approach. Both methodologies are guided
by potential energy functions, e.g. AMBER, CHARMM, and Rosetta [Dorn et al. 2014],
that are computable approximations of real native conformations. This makes the PSP
problem very challenging and encourages the use of problem specific information.
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Figure 1. Backbone protein representation

2.2. Rosetta Framework

Rosetta is a software package maintained by RosettaCommons 1. It is composed of several
protocols and methods for working with proteins and other macromolecules, and it has
been successfully utilized in the CASP challenges [Ovchinnikov et al. 2017]. Methods to
measure and score proteins are provided, as well as means of manipulating the protein
structures. All of which is available through an accessible and open source API in C++
and Python.

One of the features that Rosetta provides is a set of scoring functions with different
levels of detail. In Figures 2 and 3, a slice of the multidimensional search space is shown
for two different energy functions. The image represents the value of the energy function
when all protein angles are fixed and only the φ and ψ angles of residue 23 from the
“1crn” protein is changed. It is possible to see that both functions have the optimal point
next to each other and that both energy landscapes have similar features. The function
utilized in Figure 2 is referenced in rosetta as “score3” and it only considers the atoms in
the backbone of the protein and a centroid as replacement for the side chain. The function
utilized for Figure 3 is referenced in rosetta as “ref2015”(Rosetta Energy Function) and it
considers all atoms in the protein. The plateau around the optimal point shown in Figure 2
appears due to the lack of the side chain. Since the all atom function has the side chain
atoms attached to the side of the back bone whereas the centroid model has not, in the all
atom function the close proximity is penalized and in the centroid model it is not (because
there is no side chain).

Some of the protocols implemented with Rosetta utilized a sequence of scoring
functions. At each stage of the protocol the level of detail is increased. As discussed
in [Kmiecik et al. 2016], the use of coarse-grained functions at the start of the process
allows a better exploration of the search space, since the energy landscape is more smooth
and faster to evaluate. Then, at latter stages, a more detailed energy can be used to find a
better description for the protein.

2.3. Simulated Annealing

Simulated Annealing (SA) is a metaheuristic that uses the concept of annealing as a
metaphor to guide the optimization process [Kirkpatrick et al. 1983]. Compared to other
metaheuristics it is relatively simple and require only few parameters. They are: an initial

1https://www.rosettacommons.org/about
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Figure 2. Centroid Function Figure 3. All Atoms Function

temperature (t0), a final temperature (tn), a cooling scheme, and the number of iterations
(n). The temperature is used to control the chance of accepting a worse solution than
the current one. The lower the temperature the lower the chance of accepting a worse
solution will be. An increase in the energy (objective function) also decreases the chance
of accepting a solution. A RandomNeighbor(S) function is needed to generate a random
solution Snew similar to S. An energy function E(S) is used to evaluate the current so-
lution S. For the PSP problem the energy function E corresponds to the protein scoring
function and S is the set of angles describing a protein. Sbest represents the best set of
angles found by SA. The SA pseudo-code is shown in Algorithm 1.

Algorithm 1 Simulated Annealing Pseudo-code
1: S ← S0

2: Sbest ← S
3: i← 0
4: t0 ← InitialTemperature
5: tn ← FinalTemperature
6: for i ≤ n do
7: Snew ← RandomNeighbor(S)
8: ∆e← E(Snew)− E(S) . E(.) corresponds to the objective function
9: if E(Snew) < E(S) then . Minimization problem

10: S ← Snew
11: if E(S) < E(Sbest) then
12: Sbest ← S

13: else
14: if e−∆e

T > Random[0, 1] then
15: S ← Snew
16: i← i+ 1
17: T ← Temperature(t0, tn)

18: return Sbest
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3. The Multistage Simulated Annealing Method
The Multistage Simulated Annealing (MSA) makes use of different energy functions from
the Rosetta framework, in an increasing order of detail. The main concept of MSA is
to use separate stages for each energy function while keeping the same conformation
between stage transitions. The main hypothesis is that when optimizing smooth surfaces
of simpler energy functions it may lead to promising search regions in more detailed ones.
The sampling of the search space is conducted with fragments of size 3 and 9 generated
with Rosetta using the predicted secondary structures from PSSpred2 software.

A simple representation of MSA is available in Figure 4 in which each line repre-
sents a stage. Each stage is composed by the optimization algorithm (in red), the problem
specific operators (in blue), and the energy functions employed (in yellow), respectively.
The proposed MSA is composed by 6 different stages, where the first 5 uses a Simu-
lated Annealing to optimize the backbone angles and the last one is used exclusively for
repacking the side chains into the model. The first three stages are responsible for global
search and the following two stages are responsible for local search, as described next.

SA 9mer score0

SA 9mer and 3mer score1

SA 9mer and 3mer score2,score5

SA Smooth 3mer score3

SA Small Mover score3

Gradient Descent Rotamer scorefxn

Global Search

Local Search

Repacking

Figure 4. For each stage, red indicates the optimization algorithm, blue indicates
the operators employed, and yellow indicates the energy function used

The first stage of MSA utilizes an energy function that considers only the repulsive
force of the side chain centroids. Along with the use of fragments of size 9 (9-mer), this
stage provides a quick sampling of the conformational space with the goal of finding a
good starting point for the next stages. The aim of this stage is to find a conformation
where its parts does not intersect itself (a self avoiding walk), which can be verified by
checking if the energy function, namely “score0”, has its value set to 0.

The second and third stages are responsible for exploring the protein conforma-
tional space in a more broad way. Hence, fragments of size 9 and 3 are added at each SA
iteration. The energy function “score1” is used on stage two, where it consider the van der
Waals interactions, the formation of secondary structures and disulfide bonds. On stage

2https://zhanglab.ccmb.med.umich.edu/PSSpred/
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three, the energy functions “score2” and “score5” are used in an interchanging way. The
process starts with “score2” and, after a fixed amount of function evaluations, the energy
function in use is changed to “score 5” that is employed for the same amount of function
evaluations. This loop is repeated until the maximum number of function evaluations for
this stage is reached. The functions “score2” and “score5” are in the same stage because
they are very similar. The main difference is that some weights are changed in Rosetta
framework and it starts to consider the overall compactness of the conformation. The aim
of switching between these two functions is to allow the scape of local minima by using
two similar energy functions with different set of weights.

Stages four and five are dedicated to local search. Both stages use “score3” en-
ergy function which adds more terms related to compactness, solvent accessibility and
positioning of side chain centroids. At the begging of stage four, for a small amount of
iterations, fragments of size 3 are used. Then, for the rest of this stage, two fragments of
size 3 are added at once. The first one is randomly assigned to a position and the second
one is placed where it will minimize the disruption caused by the placement of the first.
This strategy increases the acceptance rate of the perturbations made without destroying
the conformation constructed so far and is called “Smooth” in Rosetta framework. Stage
5 operates by doing random changes to the dihedral angles of a randomly chosen amino
acid. The angle changes are to be very small, and if the change is attempted on an α-helix
or a β-sheet than the perturbation is even smaller. This allows for a final refinement step
without removing the shape of the secondary structures found and is called in Rosetta by
“Small Mover”.

The last stage (repacking) adds the side chains based on a rotamer
database [Dunbrack and Karplus 1993]. The repacking procedure consists of adding in
random order the side chains with the goal of minimize the potential energy (“scorefxn”).
Hence, only the terms dependent on the side chain need to be recalculated. This allows
the system to perform a full atom prediction for the target protein.

4. Experiments Setup
To evaluate the proposed method 4 well known proteins were used as target for
predictions: 1ZDD, 1CRN, 1ENG, and 1AIL. All 4 proteins are available at
PDB [Berman et al. 2002]. Their size, number of angles to optimize, and secondary struc-
tures are listed in Table 1. They have an increasing number of angles to optimize, and the
1CRN protein has the presence of α-helix and β-sheet secondary structures being the
hardest one to optimize.

During the optimization process the main goal is to minimize the scoring function.
However, since the scoring function is an approximation of the physical interactions and

Name Size Backbone Angles Structure
1ZDD 35 105 α
1CRN 46 138 α, β
1ENH 54 162 α
1AIL 72 216 α

Table 1. The target proteins
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its surface is very rugged and highly multimodal, the optimal point may not correspond
to the protein native conformation. With the goal of validating the final predicted protein,
the distance between the prediction and the native conformation is measured. This allows
the assessment of how far from the ideal the prediction is and it also allows to compare
between different related work. The distance measure is shown in Equation 1.

RMSDα(A,B) =
2

√∑n
i=n (Ai −Bi)2

n
(1)

RMSD stands for Root Mean Squared Deviation. The RMSD is the average of
the squared deviation between two structures. In this case, the α-Carbon of the predicted
conformation and the native one are compared. A value of 0 means that the two confor-
mations are identical.

The parameters used during the tests are shown in Table 2, and Table 3. All pa-
rameters were set empirically meaning that no special adjustment was performed. Hence,
this is pointed as future work. Table 2 shows the temperature schedules, and the initial
(t0) and final (tn) temperatures for each stage. The temperature schedules ts1 and ts2 are
presented in Equations (2) and (3), respectively. Table 3 shows the amount of function
evaluations performed in each stage, as well as the total amount of function evaluations
for each run. For stage3, “score2” and “score5” functions are interchanged at each 10000
function evaluations.

Values
stage1 ts1, t0 = 5.0, tn = 0.5
stage2 ts1, t0 = 5.0, tn = 0.5
stage3 ts1, t0 = 5.0, tn = 0.5
stage4 ts2, t0 = 5.0, tn = 0.0
stage5 ts2, t0 = 1.0, tn = 0.2

Table 2. SA temperature
configuration

Function Evaluations
stage1 10000
stage2 10000
stage3 100000
stage4 80000
stage5 300000
Total 500000

Table 3. Function evalua-
tions

ts1(i) =
t0 − tn

cosh(5.0 ∗ i
n

)
+ t0 (2)

ts2(i) =
t0 − tn
n

∗ i+ t0 (3)

For each protein, 10 runs were executed. The tests were run on a machine
equipped with an Intel R© CoreTM i5-3570k clocked at 4.2GHz, 16GB of RAM clocked at
1400MHz, and running a GNU/Linux operating system.

The results obtained by our method are compared with the results obtained by
two well known algorithms, namely, Differential Evolution (DE) and Genetic Algo-
rithms (GA), reported in [Narloch and Parpinelli 2017] and [Borguesan et al. 2015], re-
spectively. [Narloch and Parpinelli 2017] presents a study where different mutation op-
erators are applied sequentially, one after another during a run. The approach is called
DE Cascade and two sequences of mutation operators are explored (DEC1 and DEC2).
In [Borguesan et al. 2015], a Genetic Algorithm using heterogeneous population, diver-
sity control and operators that considers the experimental dihedral angle distribution are
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utilized. These works were chosen because they use the same set of proteins, the same
energy function framework and the same representative model for optimization.

5. Results and Analysis
Table 4 shows the results obtained. First column indicates the proteins, second column
shows the algorithms, third column shows the overall lowest energy values obtained by
each algorithm, fourth column indicates the α-Carbon RMSD for the lowest energy, and
the last column indicates the average and standard deviations for all 10 run. Bold cells
indicate best results.

When comparing the overall lowest energy values, the MSA was able to outper-
form the other methods in all 4 target proteins. This indicates that, for this particular set of
proteins, the proposed approach is a better optimizer than the other methods considered.
Considering the RMSD for the conformation with the lowest energy value, the MSA was
able to outperform the other approaches in 3 out of 4 target proteins. For 1CRN the GA
obtained a better RMSD. Ideally, there would be a direct relation between the RMSD
and the energy value. However, since the energy functions are computational approxima-
tions of real work conformations and the search space is highly multimodal, there may
be situations where a low energy value may have a higher RMSD than another confor-
mation with a higher energy. Analyzing the average and standard deviation of the results
obtained, fifth column, it is possible to identify that MSA is a significantly better opti-
mizer. Statistical tests were not performed because other results were obtained directly
from respective original articles. However, it is clear that there is no standard deviations
overlapping among the MSA and other approaches.

Protein Version Min. Energy RMSDα(Å) Avg. Energy
1ZDD DEC1 54.27 7.67 82.97± 15.49

DEC2 65.77 9.42 82.76± 9.22
GA -40.40 10.9 −36.20± 2.60
MSA -62.99 2.62 −48.96± 7.77

1CRN DEC1 82.86 21.56 126.95± 25.98
DEC2 72.48 15.44 109.08± 22.96
GA -22.70 5.8 −18.20± 2.9
MSA -76.93 6.96 −54.01± 17.30

1ENH DEC1 294.25 14.72 372.11± 52.05
DEC2 255.54 19.28 320.38± 41.06
GA -56.08 14.99 −51.52± 1.94
MSA -95.86 5.70 −80.75± 8.48

1AIL DEC1 357.84 25.00 440.63± 58.11
DEC2 332.54 16.88 411.81± 56.84
GA -75.07 12.34 −71.08± 3.35
MSA -128.55 8.27 −117.54± 10.28

Table 4. Results obtained

Table 5 shows the average processing time for each protein measured in minutes.
For the DE approaches the reported processing times were 48 minutes for the smallest
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protein (1ZDD), and 2 hours and 52 minutes for the largest one (1AIL). The reported
processing time for the GA was about 12 hours for each run for the same set of proteins,
neither limiting the number of generations nor the maximum number of function evalu-
ations. Even though the hardware utilized are not the same, the time difference can not
be explained just by the hardware difference but also by the simplicity of the proposed
method. The processing times achieved by the MSA are expressive when compared with
other approaches showing its robustness.

Protein Time (min)
1ZDD 3.5± 0.17
1CRN 5.57± 0.22
1ENH 6.78± 0.37
1AIL 9.56± 0.01

Table 5. Processing time per protein

In Figure 5(a-d) the predicted proteins (in green) are compared to their native
conformations (in red). For 1ZDD and 1AIL the secondary structures were correctly
assembled. 1ZDD has a near native conformation found, where only the middle coil
section was misplaced. For 1CRN only one of the two α-helices were found and none
of the β-sheets. For 1EHN, two out of tree α-helices were found. The third one was
misfolded as a β-bridge. The two α-helices found were close to the native conformation,
but the other one was miss oriented. For 1AIL, all secondary structure was found. One of
the α-helices was shorter than the native conformation and it folded in the wrong side of
the protein.

(a) 1ZDD (b) 1CRN (c) 1ENH (d) 1AIL

Figure 5. Predicted Proteins (green) compared to the Native conformations (red)

6. Conclusions

This work presented a Multistage Simulated Annealing Algorithm to solve the Protein
Structure Prediction problem. The proposed approach applied different energy functions
in an increasing level of detail using Rosetta framework. Also, non-homologous fragment
insertion and a final repacking stage were employed.

Based on the results obtained we observed that the use of different levels of detail
leads to a better overall prediction. The MSA is able to construct a solution with a better
angle distribution resembling the native conformation by using fragment insertion. Also,
the sequence of stages using the backbone and centroid coordinates model reduces the
complexity of the problem providing a reliable distribution of angles for the side chain
repacking stage.
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As future works it is possible to better adjust the set of parameters of MSA, also
considering the application of parameter control techniques. To include more and larger
proteins in the experimentation set may provide a better insight on MSA’s efficiency.
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Guyeux, C., Côté, N. M.-L., Bahi, J. M., and Bienia, W. (2014). Is protein folding problem
really a np-complete one? first investigations. Journal of bioinformatics and computa-
tional biology, 12(01):1350017.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., et al. (1983). Optimization by simulated
annealing. science, 220(4598):671–680.

Kmiecik, S., Gront, D., Kolinski, M., Wieteska, L., Dawid, A. E., and Kolinski, A. (2016).
Coarse-grained protein models and their applications. Chem. Rev, 116(14):7898–7936.

Narloch, P. H. and Parpinelli, R. S. (2017). The protein structure prediction problem
approached by a cascade differential evolution algorithm using rosetta. In 6th Brazilian
Conference on Intelligent Systems, pages 294–299.

Nunes, L. F., Galvão, L. C., Lopes, H. S., Moscato, P., and Berretta, R. (2016). An integer
programming model for protein structure prediction using the 3d-hp side chain model.
Discrete Applied Mathematics, 198:206–214.

Ovchinnikov, S., Park, H., Kim, D., DiMaio, F., and Baker, D. (2017). Protein structure
prediction using rosetta in casp12. Proteins: Structure, Function, and Bioinformatics.

Walsh, G. (2002). Proteins: biochemistry and biotechnology. John Wiley & Sons.

Zhang, X., Wang, T., Luo, H., Yang, J. Y., Deng, Y., Tang, J., and Yang, M. Q. (2010). 3d
protein structure prediction with genetic tabu search algorithm. BMC systems biology,
4(1):S6.

IX Computer on the Beach 859 




