
MITRAS - Inteligent Model for Software Application
Transformation

Lucas Silveira Kupssinskü1∗, João Carlos Gluz1

1PPGCA - Programa de Pós Graduação em Computação Aplicada
Universidade do Vale do Rio dos Sinos (UNISINOS)

93.022-750 – São Leopoldo – RS – Brazil

lucas.kup@gmail.com, jcgluz@unisinos.br

Abstract. Software maintenance is costly for software developers and customers
as well. This work presents a model of software transformation that can be used
to allow new features to be implemented without programming knowledge. To
achieve this, an abstract graph representation of the software is proposed, this
representation can then be modified through graph transformations.

1. Introduction
Software maintenance may be a burden for software developers and users as well. Often
there is demand for small changes while more important projects are due, and users often
needs to wait for long schedules and costly services. Some degree of autonomy in soft-
ware changes, without requiring programming skills, could be beneficial to both sides. To
achieve this goal, techniques in program transformation and synthesis are needed.

Although some maintenance activities are specific or requires great refactoring
and changes in business rules, we claim that a significative number of activities can be
mapped through graph transformations, given that the user choose how he want it to be ap-
plied. According to maintenance types as defined in the SWEBOK [Bourque et al. 2014],
the proposed model can be applied to adaptive and perfective maintenances.

To allow software to be manipulated by non-developers, the system must have
both domain and programming knowledge [Rich and Waters 1993]. The domain knowl-
edge is used to communicate with the user while the programming knowledge is used
in synthesizing the software after transformation. Both domain and programming related
knowledge are represented in some extent in source code, to our purposes this information
is extracted and manipulated as a directed graph

2. Proposed Solution
Mitras objective is to provide a model that enables software modification without explicit
programming. In this regard, figure 1 shows the proposed model flow, dashed lines indi-
cate activities that doesnt need to be executed in every transformation.

In the presented approach, the first step is to mine the source code of the desired
software, searching for entities such as classes, associations dependencies, configuration
files, html pages and to construct a graph embedding this information. One important
particularity in the present step is to construct nodes enabling navigation to source code if

∗Bolsista do CNPq - Brasil

IX Computer on the Beach 921



Figure 1. MITRAS Model

necessary. Since each transformation is applied in the graph level, the source code mining
only needs to be applied once to the source code, but if necessary it can be applied again
an arbitrary number of times.

The extracted graph merges information found in parse trees to elements of the
software that are not compiled, such as configuration, properties and html files. Since the
graph is directed, all edges have a certain direction that maps some meaning to the relation
it represents, for instance, in a inheritance relationship it can show what is the super class.
Labels also carry information, they identify nodes as classes, jsp, methods and attributes.
In the designed graph, both labels and the direction of edges carries semantics of the
model.

Taking as input the graph, the core of Mitras models lies in the transformation
capabilities. Using the single pushout technique [Ehrig et al. 2015], specifics subgraphs
are pinpointed in the original graph trough isomorphism and are transformed into other
graphs with new features embedded. Theoretically, a transformation could be applied in
an arbitrarily sized set of subgraphs given that the isomorphism was found, to make the
transformation a more manageable tool we restricted the matching step of the transforma-
tion to find only one isomorphism at a time.

The changes in the graph model are ultimately transposed to source code in a
process we call injection. Source code injection is done identifying elements manipulated
in the transformation, such as adding nodes and edges, and doing the equivalent operations
in source code and configuration files. After source injection, the code is ready to build
and to deploy a new version.

3. Final Considerations

This paper has presented a model for software transformation, showing how graph trans-
formations can be applied to synthesize new features in a software. Through source code
mining, it was possible to build an abstract graph with architectural information of the sys-
tem without exposing all the details regarding implementation. This level of abstraction
is sufficiently expressive to provide a base for different graph transformations, the next
steps in this research is to find an arbitrary system and execute a controlled experiment.

References

Bourque, P., Fairley, R. E., et al. (2014). Guide to the software engineering body of
knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press.

Ehrig, H., Ermel, C., Golas, U., and Hermann, F. (2015). Graph and Model Transforma-
tion: General Framework and Applications. Springer.

IX Computer on the Beach 922



Rich, C. and Waters, R. C. (1993). Approaches to automatic programming. Advances in
computers, 37:1–57.

IX Computer on the Beach 923




