
Embedding Multi-Agent System Frameworks:
A Benchmarking

Cleber Jorge Amaral1

1Instituto Federal de Santa Catarina - IFSC
Campus Sao Jose - SC, Brazil

{cleber.amaral}@ifsc.edu.br

Abstract. The increase use of Multi-Agent Systems (MAS) is mobilizing efforts
to develop techniques to embed agents. The development of new approaches
may be motivated because of fact that the most popular MAS developing fra-
meworks use high level languages. It brings challenges, in terms of capability,
to run these applications and to guarantee good performance. This research
aims to test these popular frameworks in also popular embedded platforms. The
objective is to check whether it is feasible and how these frameworks perform
common embedded tasks like sensing and actuation as well as in communica-
tion.

1. Introduction
Many programming approaches were proposed in Multi-Agents Systems (MAS) field.
Recent researches are focusing on BDI (Beliefs - Desires - Intentions) architecture, which
fairly represents the agents knowledge about the world, the objectives to achieve and on-
going plans. This architecture can provide good resources to develop the logical theory as
well as practical issues [Mascardi et al. 2005]. To develop agents, most of the approaches
use high level programming languages, specially Java, which is the base language of 4 of
top 5 most popular Multi-Agent Systems platforms [Kravari and Bassiliades 2015].

In the other hand, embedded platforms are limited in computation and storage
resources comparing to computers [Semwal and Nair 2016]. It is mobilizing the de-
velopment of new approaches suitable for these constrained applications. The strong
abstraction of high level languages combined to interpretation or intermediate repre-
sentation brings challenges related to performance, specially for embedded systems
[Semwal et al. 2015].

In this research it is intended to test BDI approaches in different embedded plat-
forms. It aims to check whether and which common embedded platforms may support
these systems. In this sense, an application based on Gold Miners challenge will be deve-
loped for each MAS framework. These programs will run in different embedded platforms
to check CPU and memory occupancy, as well as response time of the agent.

2. Methodology and Partial Results
The test scenario is being a combination of physical and simulated robots which should
use sensors, actuators and communication. The proposed challenge is a known application
of MAS called Gold Miners. In this problem there are multiple agents with the miner role,
which means that they should go around the area and search for gold. When some miner

IX Computer on the Beach 939



finds gold it should bring to an station. As represented in Figura 1, a miner agent in a MAS
approach is going to run in the board. In this distributed system, this miner application
connects to a server, joining in a central MAS.

In this research a MAS Gold Miners implementation will be developed for each
BDI approach to be tested which are: Jack, JADE and Jason. The approaches should
provide functions to distribute the system in a central and a miner. The central run in a
computer server and the miner embedded in a board. The embedded miner should interact
with physical world reading and writing pins. The embedded platforms to run the miner
code are: Raspberry Pi 3 (Running Raspbian and ChibiOS) and Cubieboard 3 (running
Cubieez operating system).

Figura 1. Test combinations of MAS frameworks and embedded platforms

At current time the Gold Miners challenge was adapted for JaCaMo (Jason +
CartAgO + Moise) framework. A central application was developed to run in a computer
server and provide a common environment for remote agents connect using CArtAgO
infrastructure. The miner agent was deployed and tested using a Raspberry Pi 3 Model B
running Raspbian 4.9.41-v7+. The movements of the miner were decided by the remote
board which sent to the central, by CArtAgO artifacts, its intentions. The central received
its attempts and checked if the movement was allowed and if the agent reached gold.
When the agent found gold, the board turned a LED to ON state, as an output function.
The LED was turned OFF when the agent put the gold in the depot.

The results showed that JaCaMo could be embedded, the agent communicated
properly with the central which could update the physical state of the miner. The Rasp-
berry board showed only 0,4% of its CPU usage when just the operating system was
running. After the joining miner was launched the CPU usage1 rose to 26,5%. The me-
mory occupancy in same condition rose from 10% to 17%. For response time, the LED
pin was connected to a configured input pin. After each state change of the LED an in-
ternal timer was triggered and stopped after the agent perceived its change by the input
pin. This situation was tested 30 times. The average response time of this agent was 292
microseconds with a standard deviation of 443 microseconds2.

1For CPU usage and memory occupancy the linux command ’top’ was used. About memory, it is
considering physical and swap

2For response time the Java function System.nanoTime() was used.

IX Computer on the Beach 940



3. Conclusion
The average response time was about 300 microseconds what could be enough in common
embedded applications. About standard deviation, it could be considered high. In one of
those 30 samples the response time exceed 2 milliseconds, showing it as an inaccurate
parameter. This result was indeed foreseen since Raspbian is a non real-time system.
This behavior would be apart of any agent technology or even optimized applications.
It is important to consider that it is not usual such non real-time operating systems in
critical tasks of embedded systems, like a motor encoder reading, which requires short
and precise processing time. In these cases it is common to have an specific processor,
usually with a small application running in a super loop.

On the whole, current tests are showing that Jason agents can run properly on
one of the most popular embedded platforms, Raspberry Pi 3. The processor usage and
footprint are not being heavily affected and it is showing that bigger applications can be
embed. The next steps of this research is to compare this results with other embedded
platforms and operating systems, specially a real-time operating system where the res-
ponse time should be more regular. Finally, the same application should be developed for
the other MAS frameworks to test them in similar situation.

Referências
Kravari, K. and Bassiliades, N. (2015). A survey of agent platforms. Journal of Artificial

Societies and Social Simulation, 18(1):11.

Mascardi, V., Demergasso, D., and Ancona, D. (2005). Languages for programming bdi-
style agents: an overview.

Semwal, T., Bode, M., Singh, V., Jha, S. S., and Nair, S. B. (2015). Tartarus: A multi-
agent platform for integrating cyber-physical systems and robots. In Conference on
Advances In Robotics, pages 20:1–20:6, New York, NY, USA. ACM.

Semwal, T. and Nair, S. B. (2016). Agpi: Agents on raspberry pi. Electronics, 5.

IX Computer on the Beach 941




