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Abstract. Deep Learning constitutes a modern approach for image processing
with considerable potential and promising results. As Deep Learning has been
successfully applied to various application domains, it has also recently em-
ployed in Precision Agriculture. Taking this into account, this work proposes
the use of machine learning techniques, more specifically Convolutional Neu-
ral Networks (CNN), to detect and count individuals in eucalyptus plantation
images, acquired from Unmanned Aerial Vehicles (UAV). The obtained results
were provided by a Faster R-CNN Resnet101, with validation procedure per-
formed against manual human annotation. Experimental results demonstrated
a overall precision of 95.77% and the affordability of the approach for forestry
inventories.

1. Introduction
With the development of new technologies, new opportunities are open to increase the
work productivity and the intelligent resource management in several application do-
mains. In the last few years, agriculture has been one of the areas that have obtained
big advantages with the advance of the new technologies of monitoring and analysis,
since the larger-scale observation is facilitated by the use of remote sensing and georef-
erencing [Bastiaanssen et al. 2000]. It can be done using satellite images, airplanes or
Unmanned Aerial Vehicles (UAVs), i.e. drones, providing snapshots of the agricultural
environment, being also a non-destructive method to collect information about the envi-
ronment [Kamilaris and Prenafeta-Boldú 2018].

Images constitute a large part of the data collected through remote sensing. It
usually provides a complete description of the agricultural environments, but also brings
some challenges [Ozdogan et al. 2010]. The most popular techniques used for analyzing
images includes the use of machine learning methods. There are many problems in agri-
culture that uses classical machine vision algorithms that could be benefited by the use
of deep learning methods [Grinblat et al. 2016]. For some typical applications, there is a
natural tendency to replace the classical techniques of machine vision for deep learning
algorithms. These methods improved the state-of-art in object detection, object recog-
nition and many other areas. It is bringing great advances in solving problems that the
artificial intelligence community tried to solve for years [LeCun et al. 2015]. The use of
deep learning in agriculture is recent. However, its growing popularity makes this as a
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promising technique since the advancements and applications of deep learning in other
domains indicates a considerable potential [Kamilaris and Prenafeta-Boldú 2018].

Within this context, this work proposes the use of a CNN for detection and count-
ing of individuals in an eucalyptus plantation. A Faster R-CNN Resnet101 trained by 6000
steps using RGB images captured by UAVs was used to detect and count the individual
plants. A total of 7833 eucalyptus plants in the region of interest can be found in a state
that is detectable by a human being, also called here as Ground Truth (GT). The obtained
results validate the use of CNNs for counting of those individuals, and also demonstrated
the feasibility of the machine learning to provide analysis on forestry sector.

The remainder of this paper is organized as follows: Section 2 highlights the re-
lated works found over the literature. In Section 3 a detailed description of the proposed
methodology is presented, describing the methods and techniques adopted to solve this
particular problem. The obtained results, experimental environment and validation pro-
cedures are described in Section 4. Finally, conclusion, discussions and further works are
discussed in Section 5.

2. Related Works

The higher resolution images captured by UAVs, and the powerful tools provided by
deep learning open an opportunity to bring advances and to pave the way for precision
agriculture. Over the literature we can find many researchers combining these tools to
propose new solutions, and some of them are presented below.

In [Sa et al. 2016] the authors presented an approach to fruit detection using a
Faster R-CNN adapted through transfer learning. Results show an improvement on ac-
curacy, and in processing time (compared to prior works) to deploy for new fruits, as it
requires bounding box annotation rather than pixel-level annotation. A simulated (trained
on synthetic data and tested on real data) deep convolutional neural network for yield
estimation was presented in [Rahnemoonfar and Sheppard 2017]. To capture features on
multiple scales, it was used a modified version of the Inception-ResNet architecture. The
algorithm counts efficiently even if fruits are under shadow, occluded by foliage, branches,
or if there is some degree of overlap among fruits. The results show a better performance
on synthetic images rather than on real images.

In [Bargoti and Underwood 2017a] was presented a fruit detection system using a
Faster R-CNN in image data captured in orchards. Data augmentation techniques were
found to improve performance with different number of training images. The study
leads to the best yet detection performance (comparing with author’s prior work). In
[Bargoti and Underwood 2017b] was also proposed a framework for fruit detection and
counting using orchard image data. A general purpose image segmentation approach was
used, with Multilayer Perceptron and CNN. The pixel-wise fruit segmentation was done
using the Watershed Segmentation and Circular Hough Transform. The results show an
improvement in fruit segmentation performance, and the count estimates using CNN and
Watershed Segmentation resulted in the best performance for the dataset used.

A fruit counting pipeline based on deep learning was described in
[Chen et al. 2017]. A blob detector based on fully convolutional network extracts can-
didate regions in the images, and a counting algorithm based on a second convolutional
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network estimates the number of fruits in each region. Finally, a linear regression model
maps the fruit count estimate to a final result. Experiments showed that the pipeline has
a short training time and performs well. Another fruit counting pipeline was presented in
[Liu et al. 2018]. First, a fully convolutional network was trained to segment video frame
images into fruit and non-fruit pixels, and the evaluation of the algorithm was done by
comparing the results with the ground truth annotated by humans. Results demonstrated
that the pipeline was able to accurately and reliably count fruits across image sequences.

In [Xie et al. 2016] the authors proposed an algorithm for tobacco plants recog-
nition and counting. The UAV captured images were processed using morphologi-
cal reconstruction, and a Support Vector Machine was employed to classify the can-
didate regions as tobacco plants or not. Experimental results showed that the pro-
posed method was adequate to the dataset. Also using UAV acquired images, in
[Gnädinger and Schmidhalter 2017] images were analyzed to count maize plants. The
analysis was made on the color of the leaves, using different image processing techniques.
The error between the visually and digitally counted plants was small, demonstrating the
capability of the proposed solution.

In [Reza et al. 2017] the goal was to automatically detect and count rice plants
using images acquired with an UAV. It was applied morphological operations on binary
images, and drawn boundaries to the connected components to count rice plants. The
comparison between the numbers of rice plants detected and counted by the naked eye
provided acceptable results. In [Ribera et al. 2017] the authors used an Inception v3 to
count crop plants in field. Images were acquired using an UAV, and the number of plants
was estimated using linear regression. The authors used a method to extract images of
sections from an orthorectified image of the entire crop field, where these images were
used for train and evaluate the CNN. Results showed a small error, validating the use of
deep learning on the generated dataset.

3. Methodology
The main purpose of this work is to present a performance evaluation of a machine learn-
ing algorithm applied to the agriculture context. A well-defined methodology is important
to present scientific robust results, as well as its validation procedure used to measure its
overall performance. A general overview of the presented approach is summarized in the
Figure 1, where the five steps are described and detailed in the next subsections.

Figure 1. General overview of the proposed approach for detection and counting
of eucalyptus plantation individuals.

3.1. Image Acquisition

The images used in this work were acquired using a fixed-wing mapping UAV, model
Maptor, built by Hórus Aeronaves. This mapping method allows to acquire images with
higher spatial resolution when compared to traditional remote sensing methods, like satel-
lite imagery or even conventional aerophotogrammetry. The images were acquired with
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an embedded camera of 20MP from an altitude of 130m high, and were processed using
the software Pix4D, aiming to obtain an orthomosaic from the flight region, as shown by
Figure 2. The region of interest is placed on the center (marked as a reddish polygon).

Figure 2. The original orthomosaic and region of interest highlighted in red, used
in the experiments.

3.2. Dataset Generation
In machine learning applications, two sets of data are required: (i) a set for training and
(ii) another one for testing with zero bias for performance evaluation. The training set
need to be carefully selected in order to avoid convergence problem during the training
step. Also, a good dataset must contain enough samples to be able to cover the most part
of the cases that is necessary to classify [Kamilaris and Prenafeta-Boldú 2018].

The orthomosaic usually cover a large area, having tens of kilometers of pictorical
information. Additionally, it is made necessary to process this information in blocks,
since the CNNs demands a lot of computational resources, even in the presence of smaller
images. In this work the region of interest was divided in fixed blocks of 512×512 pixels.
To annotate the images, it was used the LabelImg1, an open-source software tool for
graphical image annotation. It was selected only the plant’s canopy, avoiding to select
other artifacts such as plant shadow or its neighborhood parts. A total of 218 images were
generated, where 70% were randomly used for training (153 images, 5563 individuals)
and the remainder 30% (65 images, 2270 individuals) for testing.

3.3. Training Step
The used CNN was developed in Python using the TensorFlow2 framework. This tool was
chosen by its popularity, good documentation and vast community support. In this work,

1https://github.com/tzutalin/labelImg
2https://tensorflow.org
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it was used the Faster R-CNN Resnet101. The choice was based on the study showed
by [Huang et al. 2017], where the authors presented the speed/accuracy/memory trade-
offs in modern CNNs, using the COCO Dataset3 for the evaluation. The selected meta-
architecture stays approximately on the center of the graph when measuring accuracy and
speed, providing a good balance.

In most cases, the CNN is not trained from scratch, with random initialization.
It happens because is relatively rare to have a dataset large enough to do this. So, it
is common to train a network with a large dataset, i.e. ImageNet, and use its weights to
retrain the CNN for a similar problem [Pan et al. 2010]. This process is known as Transfer
Learning. In our case, the transfer learning was done using the pre-trained models found
in TensorFlow Model Zoo4.

The most part of the parameters used in the experiments were default network
values suggested for this architecture and configuration. The network was trained by
6000 steps, with the batch size set to 1. The only change made was the learning rate,
whose value was decreased to 1/10 of its previous values (at every 1500 steps), allowing
the network to get closer to its global optimum state.

The TensorFlow Object Detection API5 was used with this6 specific commit. This
Application Programming Interface (API) provides a fast way to train and test different
meta-architectures of networks and feature extractors. Nonetheless, periodically the soft-
ware stores a checkpoint file with information related to the training process until the
present time. Since the output of the API is the value of loss only, the TensorBoard 1.11.0
was used to check the progress of the training step. The training was finalized based on
the value of the variable TotalLoss. In other words, when this value can be considered
stabilized, the training process is stopped.

3.4. Post-Processing

After the training process is completed, a validation procedure to inspect the precision of
the proposed model is necessary. An automated procedure was developed in Python to
load the inference graph and process the test images used in the dataset. The obtained
results presented (for some cases) the problem of double detection (the same individual
detected by the network twice), as illustrated by Figure 3a.

In order to solve this problem, a simple post-processing step was taken to the out-
put of the network (a file with the information about the detected points). This process is
based on a simple Euclidean Distance among every other positive responses on the image.
A minimal distance thresholding value was used (10 in this approach) to be considered a
double detection, and the individual who has the higher probability is then kept, removing
the others with smaller probabilities. The result of the post-processing step is shown in
Figure 3b.

3https://cocodataset.org
4https://github.com/tensorflow/models/blob/master/research/object detection/g3doc/detection model zoo.md
5https://github.com/tensorflow/models/tree/master/research/object detection
6https://github.com/tensorflow/models/tree/42f98218d7b0ee54077d4e07658442bc7ae0e661
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(a) An example of double detection prob-
lem

(b) Result of the application of the post-
processing algorithm.

Figure 3. Post-Processing: classification of objects of interest is shown at the
left side, and with post-processing at the right side, respectively.

3.5. Evaluation

An evaluation procedure was necessary to validate the network and its performance. To
do so, the Inference Graph was used, i.e., a file containing the network weights and opti-
mized model structure ready to be used. Usually, the measure provided by the API is the
Mean Average Process (mAP). It computes the average precision among all the processed
images in the test dataset. It is particularly useful to compare given two distinct networks,
but doesn’t provide reliable data to measure the performance on individuals counting.
So, the aforementioned metric is out of the scope of this paper and will not be used and
discussed here.

To check whether the network detect the individuals properly, the ground truth file
was loaded with the script previously described, combined with the output file provided by
the network. A square of 30×30 was defined around the center point provided by ground
truth files, and it was checked whether the point detected by the network belongs to this
area. If positive, it is accounted as a true positive (TP). On the contrary, it is considered a
false positive (FP). All the remaining individuals that were not detected by the model, is
accounted as false negative (FN). The term “true negative” is not used here because when
is the case, the network simply does not detect anything.

To evaluate the network as part of the goal of this approach, the metrics will not
take into account the size of the resulting bounding box, since it is important to verify how
many individuals can be detected by the model. Only the center points of the bounding
box were used. Also, the detection probability was used only as an elimination criterion,
i.e., the detected individuals that had its score below 50% will be excluded. To provide a
fair result, it is necessary to take into account the false positives and false negatives. The
false positives refer to an individual that is detected when there is no plant, while the false
negatives measure when a tree exists, but is not detected by the network.
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Two metrics were used to evaluate the network performance. The first is the De-
tection Rate. It measures the number of individuals that were correctly detected and it is
defined by Equation 1. The sum TP + FN represents the total of individuals.

Detection Rate =
TP

TP + FN
(1)

The Error Rate measures the percentage of individuals that were incorrectly de-
tected by the CNN. In another words, measures the detections that aren’t real individuals.
It is defined by Equation 2.

Error Rate =
FP + FN

TP + FN
(2)

Figure 4a shows the input image, and Figure 4b shows an example of evaluation.
The green bounding boxes shows the actual trees, and the red ones shows the detection of
the network.

(a) Input image (b) Post-processed image (overlapped
with the ground truth data)

Figure 4. An example of input and output images for this algorithm.

In this example, there were 42 trees, where 41 of them were correctly detected by
the network (true positives), resulting in a detection rate of 97.62% (Equation 1). Also,
there were a total of 44 detections, having 3 false positives and 1 false negative, resulting
in an error rate of 9.1% (Equation 2).

4. Results
The whole system was implemented using the Python Programming Language. The pro-
cessing unit is equipped with an Intel Core i3-4030U CPU @ 1.90GHz × 2, with 8GB
of RAM, a SSD Sandisk PLUS with 240 GB and an Intel Corporation Haswell - ULT
Graphics Controller. The operational system was Ubuntu Linux 16.04.5, 64-bit with
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4.15.0-36-generic Linux Kernel. The TensorFlow 1.11.0 was installed in a virtual en-
vironment. Using the previously described methodology, the results were obtained after
the network trained by 6000 steps, using the test dataset only. Figure 5 summarizes the
obtained results.

Figure 5. Overall precision obtained by the proposed approach.

Looking at the results, one can seen that the network detected 2174 of 2270 indi-
viduals, most part of them, achieving a detection rate of 95.77%. The false positive rate
was relatively high, mostly if compared with the false negative rate, where the trained
model detected 239 false individuals. Also, there were 96 false negatives, resulting in an
error rate of 14.76%.

The use of RGB images, without the application of any additional filter, brought
a good performance to the network. Also, one of the main advantages when us-
ing CNNs is the fact that it works as a general-purpose solver-problem since the fea-
tures extraction is done automatically. In other words, by the use of backpropaga-
tion, the network adjust its weights generating complex filters to detect complex pat-
terns [Krizhevsky et al. 2012]. Developing a hand-engineered feature extractor proba-
bly would be difficult, regarding the nature and complexity of the problem. According
to [Kamilaris and Prenafeta-Boldú 2018], the automatic feature extraction performed by
deep learning models is more effective when compared to the traditional approaches found
over the literature, which fits well to the purpose of this problem.

On the other hand, it is hard to justify about the execution time required to train
the model, since a personal computer was used in our experiments. To complete the
training phase with 6000 steps, the framework required 1d 22h 30m, with a final loss of
0.3121. Deep learning techniques naturally takes a large amount of time to train the model
when compared with traditional machine learning methods. However, testing, also by the
nature of the CNNs, is a fast and parallelizable procedure, and can be performed mostly
in real time [Kamilaris and Prenafeta-Boldú 2018]. Even taking almost two days (a long
time when compared with classical machine learning approaches) to train this model, it
is necessary to take into account two points: firstly, the experiments were performed in
a conventional personal computer, without a Graphical Processing Unit (GPU), and the
use of this device would decrease the training time; secondly, the time spent on manually
design filters to extract features turns the time needed to labeling each image and training
a CNN almost negligible [Sørensen et al. 2017].
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5. Final Remarks
Deep Learning is a modern approach for image processing that arguably reached its ma-
turity with potential and promising results. These techniques definitely have improved
the state-of-the-art in object recognition and detection. Since deep learning has been suc-
cessfully applied to various application domains, it has also recently employed in the
domain of agriculture. In this context, this work proposed the use of Convolutional Neu-
ral Networks (Faster R-CNN Resnet101) to detect and count individuals on an eucalyptus
plantation, on images acquired from UAVs.

The obtained results validates the possibility of use CNNs to detect and count
individuals. The results shows the success of this approach, since it achieved a detection
rate of 95.77%, close of the industry rate (about 97% of precision), which are not used
commercially. The processing time is quite high (for training), since the experiment was
performed on a personal computer, without any GPU support. However, the time spent
during the training of this model is acceptable when compared with the current scenarios
on deep learning. The time to export and load the model, and to process the images was
small, mostly when we point that this application doesn’t need to be performed in real
time (in this case). Even with the good results achieved, it is hard to compare with other
works, since each paper uses different pre-processing techniques, metrics, models, and
parameters.

The dataset plays a crucial role on machine learning. So, it is believed that in-
creasing the quality of the labeling process should help to obtain better results since on
most part of applications exists a need for experts to annotate the input images. The use of
appropriate pre-processing techniques could improve the results too. Extending the num-
ber of samples on the dataset, covering most cases, should improve the outcome from the
network, because deep learning methods needs larger datasets.

Future works must include testing different models of meta-architectures and fea-
ture extractors. Also, it is desired to use CNNs on different datasets, changing the type
of trees and evolutive stages of growth. Another experiment to be done would be to test
this CNN with this same dataset, but applying some pre-processing techniques. Some
comparisons on detection rate and processing time can be done among some classical
techniques and deep learning methods.
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Kamilaris, A. and Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey.
Computers and Electronics in Agriculture, 147:70–90.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436.

Liu, X., Chen, S. W., Aditya, S., Sivakumar, N., Dcunha, S., Qu, C., Taylor, C. J., Das, J.,
and Kumar, V. (2018). Robust fruit counting: Combining deep learning, tracking, and
structure from motion. arXiv preprint arXiv:1804.00307.

Ozdogan, M., Yang, Y., Allez, G., and Cervantes, C. (2010). Remote sensing of irrigated
agriculture: Opportunities and challenges. Remote sensing, 2(9):2274–2304.

Pan, S. J., Yang, Q., et al. (2010). A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359.

Rahnemoonfar, M. and Sheppard, C. (2017). Deep count: fruit counting based on deep
simulated learning. Sensors, 17(4):905.

Reza, M. N., Na, I. S., and Lee, K.-H. (2017). Automatic counting of rice plant numbers
after transplanting using low altitude uav images. International Journal of Contents,
13(3):1–8.

Ribera, J., Chen, Y., Boomsma, C., and Delp, E. J. (2017). Counting plants using deep
learning. In Signal and Information Processing (GlobalSIP), 2017 IEEE Global Con-
ference on, pages 1344–1348.

Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., and McCool, C. (2016). Deepfruits: A
fruit detection system using deep neural networks. Sensors, 16(8):1222.

Sørensen, R. A., Rasmussen, J., Nielsen, J., and Jørgensen, R. N. (2017). Thistle detection
using convolutional neural networks. In 2017 EFITA WCCA CONGRESS, page 161.

Xie, H., Fan, Z., Li, W., Rong, Y., Xiao, Y., and Zhao, L. (2016). Tobacco plant recogniz-
ing and counting based on svm. In Industrial Informatics-Computing Technology, In-
telligent Technology, Industrial Information Integration (ICIICII), 2016 International
Conference on, pages 109–113.

X Computer on the Beach 608 




