
On a Cooperative Hybrid Algorithm Based on Harmony Search
and Differential Evolution for Numerical Optimization

ABSTRACT
Hybrid algorithms aim to mix features from two or more evolu-
tionary/swarm algoprove both the exploration and exploitation
abilities of the algorithm. Generally, hybrid algorithms prrithms
to imesent the same quality of solution than the canonical ones,
in the worst case scenario. However, it is common that hybrid
algorithms present better outcomes than the canonical ones. In
this context, this paper proposes a cooperative hybrid algorithm
based on Harmony Search and Differential Evolution named HS-DE.
The algorithm has been tested in five benchmark functions well
known in the literature. Results have shown that HS-DE presents
better solutions than Genetic Algorithms, Particle Swarm Optimiza-
tion, Differential Evolution, and Harmony Search in all benchmark
functions.
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1 INTRODUCTION
Numerical Optimization problems exist widely in different areas
of scientific research and engineering practice [1]. It is a tool for
solving practical unconstrained problems that can be devised by
many variables. Its primary purpose is to discover the best values
for design variables and objective functions that are not known
precisely [2]. In general, unconstrained problems can be devised by
test functions, also known as benchmark functions. Benchmarks
are artificial problems that can be used to evaluate the behavior
of an algorithm in diverse and challenging situations [3], such as,
functions containing multiple local optima (multimodal), and hard
quadratic functions, such as, the Rosenbrock [4] function.

Classical methods for solving numerical optimization are fast;
however, they present two critical drawbacks. The first one is re-
lated to the number of variables, i.e., they can be used only in a
small number of variables. The second one regards to the differen-
tiability of the objective function, i.e., classical methods demand
that functions are derivable, which is not common in real-world
problems. Thus, meta-heuristics, such as Differential Evolution
(DE) [5], Particle Swarm Optimization (PSO) [6], Genetic Algo-
rithms (GA) [7], and Harmony Search [8], represent a viable set of
techniques suitable for solving this unconstrained and sometimes
non-differentiable functions.

Even though traditional meta-heuristics have proved to be effi-
cient, hybrid algorithms tend to present better results than canon-
ical meta-heuristics, as we can see in [9], [10], and [11]. In this
context, this work presents a hybrid algorithm based on Harmony
Search and Differential Evolution for solving Numerical Problems,
which are similar to those found in engineering problems. We used
five benchmark functionswell known in the literature: Rosenbrock[4],
Sphere [12], Schwefel[13], Rastrigin [14], and Griewank[15].

In this context, this work is divided as follows: Section 2 in-
troduces the main concepts on numerical optimization. Section 3
shows the meta-heuristics used in this work, along with our hybrid
algorithm proposal. Section 4 presents the results of our cooperative
hybrid algorithm and compares it against canonical meta-heuristics.
Finally, in Section 5, we draw some conclusions of this work.

2 NUMERICAL OPTIMIZATION
The unconstrained numerical optimization proposes to minimize or
maximize an objective function depends on floating point variables,
with no restrictions at all on the values of these variables [16].
Mathematically, it is min or maxf (x), where x ∈ Rn and n ≥ 1.
Thus, a solution x∗ is a global solution of a minimization problem
if f (x∗) < f (x) ∀ x ; analogously, it is a solution of a maximization
problem if f (x∗) > f (x) ∀ x .

Regardless of the kind of optimization, if we want to use a GA
for this kind of problem, it is mandatory that n > 1. The variable n
regards to the dimensionality of the search space that is an essential
factor in the problem complexity, since the higher the dimension,
the higher the probability of getting trapped in a local optima [17].

Two other properties are crucial in numerical optimization: sepa-
rability andmulti-modality. The separability involves the possibility
of dividing f (x) into two or more functions. Consequently, non-
separable functions are more challenging to optimize then separable
ones. Multi-modality concerns the existence of many local optima.
Thus, non-separable and multi-modal functions represent a more
significant challenge to solve than the other ones.

As previously mentioned, we will test our code using five uncon-
strained continuous numerical benchmarks functions: Rosenbrock,
Sphere, Schwefel, Rastrigin, and Griewank. Table 1 presents the
function, benchmarks properties (Separability, Modality, and Dif-
ferentiability), the domain, and the global optima. The domain is
a constraint for each gene, i.e., the lower and upper bounds. The
optimal solution is the minimum value that the benchmark can
reach. The separability represents if the function is separable, i.e., if
the function can be split into two or more functions. In other words,
a function of p variables is called separable, if it can be written as a
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sum of p functions of just one variable [18]. Finally, the modality
regards to the existence of many local optima. In this context, non-
separable and multi-modal functions are harder to solve than the
other ones. Figures 1 to 5 show the appearance of each benchmark
function on a three-dimensional space (two variables).

Figure 1: Rosenbrock

Figure 2: Sphere

Figure 3: Schwefel

Figure 4: Rastrigin

Figure 5: Griewank

3 META-HEURISTICS
A meta-heuristic is a top-level strategy that guides an underlying
heuristic solving a given problem [19]. In this context, this section
presents two different meta-heuristics used in this work: Harmony
Search and Differential Evolution. Then, we present our approach
that cooperatively uses both meta-heuristic.

3.1 Harmony Search
Music harmony is a combination of sounds considered pleasing
from an aesthetic point of view [8]. Harmony is a special relation-
ship between several sounds that are pleasant to humans. In this
context, composers aim to obtain the best combination of sound
waves that are already in the musician’s memory. The process of
choosing harmonies from their memory ends up being an opti-
mization process. According to Yang [20], Harmony Search is a
music-based optimization algorithm inspired by the searching for
the perfect state of harmony.

The HS algorithm is presented in Algorithm 1, in which there are
two basics steps: (i) improvising a new harmony and (ii) updating
the harmony memory. The improvisation comes from the musician
experience, and the updating is performed only if the improvisation
sounds good.

As done in other meta-heuristics, the initialization process of the
Harmony Memory is done randomly. Then the improvisations are
performed by using the Equation 1, in which HMS is the harmony
memory size, HMCR is the Harmony Memory Consideration Rate,
between zero and one, of choosing one value from the historical
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Table 1: Benchmark functions properties

Name Function Domain Min Separable Multimodal Differentiable
Rosenbrock f1(x) =

∑n
i=1 [100(xi+1 − x

2
i )

2 + (xi − 1)2] [-2.048,2.048] 0 No No Yes
Sphere f2(x) =

∑n
i=1 x

2
i [-5.12,5.12] 0 Yes No Yes

Schwefel f3(x) =
∑n
i=1 −xi sin

√
|xi | [-500,500] 0 Yes Yes Yes

Rastrigin f4(x) = 10n +
∑n
i=1(x

2
i − 10 cos(2πxi )) [-5.12,5.12] 0 Yes Yes Yes

Griewank f5(x) =
1

4000
∑n
i=1 x2i −

∏n
i=1 cos(

xi√
i
) [-600,600] 0 No Yes Yes

Algorithm 1 - HS Pseudo Code

HM← InitHarmonyMemory();
fitness← Eval(pop);
while stop Criterion not reached do

Improvise a new harmony
Update the harmony memory

end while

values stored in the Harmony Memory. Whereas (1-HMCR) is the
rate of randomly selecting one value from the domain of each
dimension, and HMS represents the harmony memory size. If we
use, for instance, an HMCR equals to 95%, it means that variables
x
′

i will be mostly chosen from the HM.

x
′

i =

{
xi ∈ x

1
i , x

1
i , ..., x

HMS
i ,HMCR

xi ∈ Xi , 1 − HMCR
(1)

The second step of the improvisation is to verify if the new har-
mony x

′

needs a pitch adjustment. The process is done on each
variable according to Equation 2, in which PAR is the Pitch Adjust-
ing Ratio, which is a random number between zero and one.

x
′

i =

{
Yes , PAR
No , 1 − PAR

(2)

If the decision is Yes , then the pitch is adjusted as presented in
the Algorithm 2, in which bandwidth = 0.05. Finally, if the new
harmony is better than the worst one in the HM, then the new one
replaces it.

Algorithm 2 - HS Pitch Adjustment
r = random(0,1)
if (r < PAR) then

r = random(0,1)
if (r < 0.5) then

x
′

i ← x
′

i − r ∗ bandwidth
else

x
′

i ← x
′

i + r ∗ bandwidth
end if

end if

3.2 Differential Evolution
Differential Evolution (DE) is a metaheuristic developed by Storn e
Price [5] in 1995. It works similarly to a Genetic Algorithm, however,
using distinct operators. The Algorithm 3 shows its pseudo code.

The DE algorithm begins initializing a random population and
evaluates it. Then, the mutation process chooses three random
individuals creating the vector v , which is also called a vector of
differences, in which F is a constant determined by the programmer.
Then, a new individual is created by using a gene fromv if a random
number is less thanCR (Crossover Rate); otherwise, the gene comes
from popi j . Finally, if the new individual is better than that one in
the current population, the new one replaces it.

Algorithm 3 - DE Pseudo Code
pop← InitPopulation();
fitness← Eval(pop);
while stop Criterion not reached do

Select 3 individuals randomly: indiv1, indiv2, indiv3;
vj ← indiv3 + F × (indiv1 − indiv2);
if (rand() < CR) then

new_indivj ← vj
else

new_indivj ← popi j
end if
if fitness(new_indiv) better than fitness(popi ) then

popi ← new_indiv ;
end if

end while

The strategy presented in the Algorithm 3 is called DE/Rand/1
because all individuals are randomly selected, and only one vec-
tor of differences is created. However, if indiv1 is replaced by the
best solution in the population, the name of strategy changes to
DE/Best/1.

3.3 The Cooperative Hybrid HS-DE Algorithm
Our proposal is presented in Algorithm 4. The first step is similar
to the canonical HS in which the Harmony Memory is initialized
according to the Harmony Memory Size and dimension. When
iterations start, a temporary population is created using the HS
algorithm and the HM. The same HM is evolved using Differential
Evolution. Then, the fitness of HS’and DE’ is computed. Afterward,
all solutions from HM, HM’, and DE’ are put together, and only the
best solutions go to the HM that will be used again by HS and DE
algorithms. The process is repeated up to the stop criterion.

Figure 6 presents a flowchart in which is more evident how the
algorithm HS-DE works. As we can see, we have two independent
flows when HS and DE update their populations. Then all popu-
lations (HM, HM’and DE’) are getting together to choose the best
solutions that undergo the next iteration. On the one hand, we
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Algorithm 4 - HS-DE Pseudo Code
HM← InitHarmonyMemory(HMS)
while stop Criterion not reached do

HM ′ ← HarmonySearch(HM)
DE ′ ← Di f f erentialEvolution(HM)
Pop ← Join(HM,HM ′,DE ′)
f it ← Evaluate(Pop)
HM ← Best(f it,HSM)

end while

perform more comparison than other algorithms; that is why we
use the number of calls to objective function as a stop criterion.
On the other hand, this approach is natural to execute in parallel,
which is not the case in this paper.

Figure 6: HS-DE Flowchart

4 EXPERIMENTS
In this section, we present how the set up of the execution envi-
ronment and the machine configuration. We also specify the pa-
rameters of the algorithms. Further, the results show a comparison
between our approach and some other meta-heuristics such as PSO,
GA, and the previously presented meta-heuristics, DE, and HS.

4.1 Setup
The experiments have been conducted in an i5 processor 8th gener-
ation with 8GB of RAM in a Linux Mint. The hybrid algorithm was
compared against GA, PSO, and DE. Concerning GA, the algorithm
was testes with and without elitism. Regarding DE, we used two
strategies: DE/Rand/1 e DE/Best/1. The algorithms were executed
in 50 trials, dimension equals 30, and population size equals 50.
Table 2 presents all parameters we have used.

Table 2: Parameters used in the algorithms

GA pc = 0.8, pm = 0.05, with and without elitism
PSO w = 0.7, c1 = c2 = 2.0, vmin = −100, vmax = 100
DE F = 0.3, pc = 0.6, DE/Rand/1, and DE/Best/1
HS PAR = 0.3, HMCR = 0.95, bandwith = 0.05

HS-DE PAR = 0.3, HMCR = 0.95, bandwith = 0.05,
F = 0.3, pc = 0.6, DE/Rand/1

4.2 Results
Two sets of experiments have been conducted. To a fair comparison
between algorithms, the stop criterion was the number of calls to
the objective function. In doing so, the first set of experiments uses
25000 calls, and the second one uses 50000 calls. GA-E represents
GA using elitism. DE1 is the DE/Rand/1 strategy, and DE2 is the
DE/Best/1 strategy.

Table 3 presents all results for the first experiment using 25000
calls to the objective function. In the Rosenbrock function, HS
reaches the best results, followed by the hybrid algorithm. In the
Sphere function, the best results were obtained by DE1, followed
by the HS-DE algorithm. The hybrid algorithm got the best results
in the Schwefel function, followed by the canonical HS. In the
Rastrigin function, the best result was obtained by the HS, followed
by HS-DE. Finally, in the Griewank, the minimum was reached by
the HS-DE and DE1.

Table 4 shows the results for the experiments using 50000 calls to
the objective function. In the Rosenbrock function, the best results
were presented by the HS algorithm, followed by the hybrid one.
In the Sphere function, the best outcomes were introduced by the
Hybrid algorithm and DE1. The DE1 and HS-DE reached the best
outcomes in the Schwefel function. In the Rastrigin, the best result
came from the HS algorithm. Finally, in Griewank, the best results
were obtained by DE1 and HS-DE.

As previously mentioned, all algorithms have been executed for
50 trials. Thus, according to the central limit theorem, the distri-
bution of data is normal; therefore, it is possible to use parametric
tests such as Analysis of Variance (ANOVA). In this context, Table
5 presents all Fs and the Fcr it ical , since if F is within the interval
−Fcr it ical > F > Fcr it ical , the differences between algorithms
there exist. Therefore, as presented in Table 5, the differences are
meaningful.

Because a complete Tukey test on all functions would demand
twelve tables, Table 6 illustrates only those comparisons in which
there are no meaningful differences. As we can see from the table,
all in all, DE1, HS, and HS-DE presents similar results.

Figure 7 shows the mean of the time for each algorithm on each
function in seconds. Aswe can see, the canonical algorithms execute
faster than the harmony search and the hybrid one. However, the
hybrid one takes advantage of the faster canonical algorithm, and
it is faster than the canonical harmony search.

The stability of the algorithms for 25000 calls to objective func-
tion is shown in Figures 8a to 8e. As we can see, the algorithm
HS-DE presents higher stability because it presents similar out-
comes in all trials. The Harmony Search algorithm also presents
a similar behavior. Therefore, we believe that the HS algorithm
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Table 3: Results for 25000 calls

GA GA-E PSO DE1 DE2 HS HS-DE
Rosenbrock

Best 582.1875 61.5629 113.6736 24.8518 684.2337 5.9320 15.7955
Mean 216437.6322 182.5494124 491488.074 572.9022 693677.3678 75.3831 611.9482
Std-Dev 497630.5205 58.5382 1930499.002 3791.6089 2351928.67 35.251 3853.1485

Sphere
Best 3.4037 0.1789 0.4078 1.80E-14 5.6906 0.0039 4.43E-11
Mean 6.1353 0.4005 3.3937 2.86E-05 15.7020 0.0064 5.57E-05
Std-Dev 1.7784 0.1205 2.4614 2.02E-04 5.1165 0.0012 1.68E-04

Schwefel
Best 429.1366 65.0257 22.4713 1.55E+03 3324.1440 13.9350 1.13E-01
Mean 928.2821 170.5744 4426.2282 2.94E+03 4530.9539 27.2608 9.85
Std-Dev 242.0254 41.7506 2297.9037 6.14E+02 598.9474 9.0918 9.45

Rastrigin
Best 28.2776 9.1238 90.6558 40.5120 55.4490 2.6637 3.9885
Mean 48.7837 15.7264 223.5985 65.5777 102.6393 5.8837 9.2040
Std-Dev 9.2960 2.9448 57.5209 9.5012 26.2267 1.9777 2.5646

Griewank
best 11.6580 1.5884 1.0733 0.0000 21.3658 1.0535 0.0000
mean 21.3854 2.3396 1.4330 0.0043 60.3952 1.1264 0.0385
std 5.8630 0.3864 0.3662 0.0179 19.7671 0.0437 0.0836

Table 4: Results for 50000 calls

GA GA-E PSO DE1 DE2 HS HS-DE
Rosenbrock

Best 451.0058 39.2119 59.1954 18.4269 1215.2040 1.7942 8.5430
Mean 1283.8968 125.6427 981.6143 35.4995 4378.2509 45.5728 55.2769
Std-Dev 458.8725 34.5220 1245.3798 15.9936 2354.3686 37.3818 29.3696

Sphere
best 2.0995 0.0698 0.0642 0.0000 6.2059 0.0019 0.0000
mean 6.1717 0.1221 1.3454 0.0000 14.7340 0.0032 0.0001

Std-Dev 1.6591 0.0435 1.5613 0.0000 5.2904 0.0005 0.0001
Schwefel

best 469.4378 26.8759 28.1167 0.0004 3080.7350 0.7181 0.0004
mean 921.0091 54.5521 4009.0481 366.9741 4417.5861 3.6995 1.0873
std 238.0650 16.4075 1505.9910 183.8218 518.7798 2.0651 1.6588

Rastrigin
best 28.8710 3.8125 20.2391 17.5648 50.2783 0.6137 3.0812
mean 49.2233 7.0679 159.0209 30.1533 99.9818 2.4452 6.6461
std 9.0091 1.7108 76.5492 6.3162 25.4143 1.3734 1.8477

Griewank
best 8.2081 1.2397 0.7227 0.0000 22.3064 0.5119 0.0000
mean 22.1890 1.4192 1.1233 0.0007 51.5851 0.9075 0.0119
std 5.6962 0.1492 0.1571 0.0023 18.1633 0.1327 0.0281

enhances the stability of the hybrid algorithm. The experiments
using 50000 calls presented similar results.

5 CONCLUSIONS
This paper presented a study involving a cooperative hybrid algo-
rithm based on Harmony Search and Differential Evolution. Results

indicated that the HS-DE algorithm presents, all in all, similar out-
comes such as Differential Evolution and Harmony Search, except-
ing in Schwefel function using 25000 calls to the objective function
in which the hybrid algorithm presents the best result. Furthermore,
the HS-DE algorithm showed satisfying stability concerning the
execution if compared with the other algorithms.
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Table 5: ANOVA test considering all algorithms

Fcr it ial = 2.125
25000 calls

Rosenbrock Sphere Schwefel Rastrigin Griewank
F 2.997 332.685 243.754 498.560 416.764

50000 calls
F 119,651 326,075 508,914 182,514 371,047

Table 6: Tukey test for all algorithms

25000 calls
Rosenbrock HS vs DE1, HS vs GA-E, and HS vs HS-DE
Sphere HS vs DE1, HS vs GA-E, and HS vs HS-DE
Schwefel PSO vs DE2, HS vs GA-E, and HS vs HS-DE
Rastrigin GA vs DE1, and HS vs HS-DE

Griewank
GA-E vs DE1, HS vs DE1, PSO vs DE1,

HS vs GA-E, PSO vs GA-E, HS vs HS-DE,
and PSO vs HS

50000 calls

Rosenbrock GA-E vs DE1, HS vs DE1, HS vs GA-E,
and HS vs HS-DE

Sphere GA-E vs DE, HS vs DE1, HS vs GA-E,
and HS vs HS-DE

Schwefel PSO vs DE2, HS vs GA-E, and HS vs HS-DE
Rastrigin HS vs GA-E, and HS vs HS-DE

Griewank GA-E vs DE1, HS vs DE1, PSO vs DE1,
HS vs GA-E, PSO-GA-E,

Figure 7: Time for each algorithm with 50000 function calls
in seconds

Future work includes: (i) a study on parameter optimization; (ii)
transforming the hybrid algorithm into a parallel one using multi-
core and many-core architectures; (iii) improving the algorithm
adding adaptive or self-adaptive features; and (iv) using the algo-
rithm to solve real-world problems such as portfolio investment
optimization and dynamic economic dispatch of power.
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(a) Rosenbrock (b) Sphere

(c) Schwefel (d) Rastrigin

(e) Griewank

Figure 8: Best results in 50 trials per function - 25000 calls
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