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ABSTRACT
Deep learning models uses many parameters to work properly. As
they become more complex, the authors of these novel models can-
not explore in their papers the variation of each parameter of their
model. Therefore, this work describes an analysis of the impact of
four different parameters (Early Stopping, Learning Rate, Dropout,
and Hidden 1) in the TextGCN Model. This evaluation used four
datasets considered in the original TextGCN publication, obtaining
as a side-effect small improvements in the results of three of them.
The most relevant conclusion is that these parameters influence the
convergence and accuracy, although they individually do not con-
stitute strong support when aiming to improve the model’s results
reported as the state-of-the-art.

KEYWORDS
neural networks, geometric deep learning, textgcn, parameter analy-
sis

1 INTRODUCTION
The increase in the availability of the internet made possible the use
of smart mobile devices. Therefore, people started to produce much
data, as observed by Kemp [1]. Many of these data are in the text
format, which may be difficult to classify. Text classification is an
important task, so people can make filters to avoid offensive content.
Those filters can also help authorities to identify cybercrimes and
cyberbully.

As many papers present new models and methodologies to clas-
sify text, they do not show how each parameter affects their creation.
Therefore, researchers willing to use these new models and method-
ologies must invest some time to discover all the potential of it.

In this paper, TextGCN, a model to classify texts, is explored. In
doing so, the authors try to identify how four parameters, from a
list of seven parameters, work. The parameters explored are Early
stopping, Learning rate, Hidden 1 and Dropout. More details are
presented in Section 4.

The goal of this paper is to guide future works that use TextGCN
to achieve its best performance. As a result of this guide, researchers
can see the limitations of the explored model.

The division of this work is the following: Section 2 introduces
the related work. Section 3 presents a brief explanation of the GCN
and the TextGCN models. Section 4 explains the experimentation
done. Finally, Section 5 finishes this paper with the authors’ final
considerations.

2 RELATED WORK
Moraes and colleagues [2] compared many proposals made to clas-
sify text. Some of these proposals are the Support Vector Machines
(SVM), Naive Bayes (NB) and Artificial Neural Networks (ANN).

In their studies, Moraes and colleagues [2] identified that ANN per-
formance is auspicious. However, there are other methods which
are much better at training time. Their experiments used the bag-of-
words (unigrams) approach.

Other initiatives on classifying text tried the Convolutional Neural
Network (CNN) and a Long Short-Term Memory (LSTM) models
to compute continuous representations of sentences. In Tang and
colleagues’ work [3], the input of a Gated Recurrent Neural Network
(GRNN) is the output of these models (CNN and LSTM). A softmax
classifier uses the output of the GRNN. The results achieved are
promising since they are better than the other methods compared
(the other methods are mainly variations of SVM).

Authors are exploring the perspective of word embedding. An
example is a work from Yu and colleagues [4], which suggests that
refining the word embedding can improve the results of the machine
learning models that already exist (CNN, Bi-LSTM, and others).

Young and colleagues [5] made a comprehensive review of the
natural language processing (NLP) field. In their work, they ex-
plain the essential concepts of the area. They also present the recent
progress of the NLP area.

Most recent works started to use Geometric Deep Learning (GDL).
One of these works was made by Zhang and colleagues [6], in
which a Graph Convolutional Network (GCN) was used to classify
sentiments using the syntactic tree of the sentences. Compared to
the literature, their results are near the state-of-the-art, or they are
state-of-the-art.

Tuning parameters, as this paper tries to do, is not new. Kout-
soukas and colleagues[7] tested different methods with different
parameters to classify different types of bioactivity. Their results sug-
gest that a substantial effect on a Deep Neural Network is achieved
by tuning parameters.

3 MODELS USED
To classify text using geometrical deep learning, the GCN model [8]
and the TextGCN [9] model stand up. They define a convolutional
model that receives as input a graph. The difference between them
is that the TextGCN needs a specific type of graph, while the GCN
receives any graph. It is important to note that the TextGCN uses the
GCN model. Subsections 3.1 and 3.2 explain about these models.

3.1 Graph Convolution Network - GCN
Kipf and Welling are the authors of the GCN [8]. They defined
a convolutional model that can process graphs. Basically, in the
GCN, the model induces embedding vectors of nodes based on the
neighbors of each node.

To make the model work, it receives as input a graph 𝐺 = (𝑉 , 𝐸),
where 𝑉 is the set of vertices and 𝐸 is the set of edges. It is also
assumed that |𝑉 | = 𝑛.
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In this graph 𝐺 , all nodes have at least one edge. This edge is an
edge to itself. Therefore (𝑣, 𝑣) ∈ 𝐸 for any 𝑣 ∈ 𝑉 . Consider there
is a matrix 𝑋 ∈ R𝑛×𝑚 as a matrix containing all 𝑛 nodes with their
features, where𝑚 is the dimension of the feature vectors and 𝑛 the
number of vertices.

Let 𝐴 be an adjacency matrix of 𝐺 and 𝐷 as the degree matrix of
𝐺 , where 𝐷𝑖,𝑖 =

∑
𝑗 𝐴𝑖 𝑗 . Notice that the diagonal elements of 𝐴 are

set 1 because of self-loops.
The first layer of this model can capture information about the

immediate neighbors. If more layers are defined, the model can work
with the information of farther nodes. There is an illustration of the
processing of this model in a graph in Figure 1.

Figure 1: GCN Layers. From the node’s perspective in the most
left top corner (red also known as node 1), in the first layer, it
only has information about itself. In the second layer, it retrieves
information about the neighbors (blue nodes [nodes 2 and 5]),
and so on.

To compute the 𝑘-dimensional node feature matrix 𝐿 (1) ∈ R𝑛×𝑘
use Equation 1

𝐿 (1) = 𝜌 (𝐴𝑋𝑊0) (1)

In Equation 1, the 𝐴 = 𝐷− 1
2𝐴𝐷− 1

2 is the normalized symmetric
adjacency matrix, and 𝑊0 ∈ R𝑚×𝑘 is a weight matrix. 𝜌 is the
activation function, the default implementation of the GCN uses it
as being a ReLU function 𝜌 (𝑥) =𝑚𝑎𝑥 (0, 𝑥).

A generalized way to define the GCN for multiple layers is:{
𝐿 (0) = 𝑋

𝐿 ( 𝑗+1) = 𝜌 (𝐴𝐿 ( 𝑗)𝑊𝑗 )
(2)

In Equation 2, 𝑗 denotes the layer number.

3.2 Text Graph Convolution Network - TextGCN
Using GCN as a base, Yao and colleagues created the TextGCN [9].
This model uses the structure of the GCN explained previously. The
difference between the GCN and the TextGCN is the input graph.
Where the GCN accepts any graph, and the TextGCN uses as input
a specific type of graph.

The TextGCN graph is composed of documents and unique words.
Each document is a file that may contain many words. Therefore, the
number of vertices of the graph |𝑉 | is the number of unique words
and documents. In order to create the edges, it is linked word to
word and document to word using the following idea:

1) Add an edge between a word and a document if that word
occurs in the document; 2) Add an edge between two words based
on the co-occurrence of the words in the whole corpus; 3) To fulfill
the GCN’s constraints, add an edge between the node and itself
(self-loop).

Each edge of this graph must have a weight. The weight is calcu-
lated depending on the type of nodes the edge links, as can be seen
in Equation 3

𝐴𝑖 𝑗 =


PMI(𝑖, 𝑗) 𝑖, 𝑗 are words
TF-IDF𝑖 𝑗 𝑖 is a document and 𝑗 is a word
1 𝑖 = 𝑗

0 otherwise

(3)

The PMI, from Equation 3, can be calculated using Equations 4,
5, and 6. Notice that the #𝑊 (𝑖) is the number of sliding windows in
a corpus that contain the word 𝑖; #𝑊 (𝑖, 𝑗) is the number of sliding
windows that contain both the word 𝑖 and 𝑗 ; and #𝑊 is the total
number of sliding windows in the corpus.

PMI(𝑖, 𝑗) = 𝑙𝑜𝑔
𝑝 (𝑖, 𝑗)
𝑝 (𝑖)𝑝 ( 𝑗) (4)

𝑝 (𝑖, 𝑗) = #𝑊 (𝑖, 𝑗)
#𝑊

(5)

𝑝 (𝑖) = #𝑊 (𝑖)
#𝑊

(6)

It is possible to calculate the TF-IDF using Equation 7

TF-IDF𝑖 𝑗 = 𝑡 𝑓𝑗,𝑖 × 𝑙𝑜𝑔

(
𝑁

𝑑𝑓𝑗

)
(7)

In Equation 7, the 𝑡 𝑓𝑗,𝑖 is the frequency of the word 𝑗 in document
𝑖. 𝑑 𝑓𝑗 is the number of documents that contain the word 𝑗 . Finally,
𝑁 is the number of documents. Furthermore, Figure 2 shows an
example of the TextGCN input graph.

Figure 2: TextGCN example Graph. Notice the omission of the
weights that aims to improve readability. Doc 1 (green) is a pos-
itive document node, Doc 2 and Doc 3(red) are negative docu-
ment nodes. Word {1,2,3,4,5} (blue) nodes are word nodes

.

Use the created graph in the GCN model. After it passes the
last GCN layer, the algorithm must run a softmax classifier: 𝑍 =

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (last GCN Layer). If the last GCN layer is the second layer,
then 𝑍 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴 ReLU(𝐴𝑋𝑊0)𝑊1).
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The softmax classifier can be defined as 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑥𝑖 ) = 1
Z exp(𝑥𝑖 )

with Z =
∑
𝑖 exp(𝑥𝑖 ). The definition of the loss function is the cross-

entropy error over all labeled documents:

L = −
∑

𝑑∈Y𝐷

𝐹∑
𝑓 =1

𝑌𝑑𝑓 ln 𝑍𝑑𝑓 (8)

In Equation 8, the Y𝐷 is the set of documents indices that have
labels. 𝐹 is the dimension of the output features, which is equal to
the number of classes. 𝑌 is the label indicator matrix. The gradient
descent can train the weight parameters.

4 EXPERIMENT
This paper investigates how the parameters: Early Stopping, Learn-
ing Rate, Dropout, and Hidden 1 work in the TextGCN model.

4.1 Experiment preparation
MR, Ohsumed, R8, and R52 are the datasets used to experiment
with each parameter’s impact. All evaluation happened with the code
developed by Yao and colleagues [9], which is accessible in GitHub1.
This work adopts the same methodology used by Yao and colleagues
[9]. All datasets collected are from the work of Yao and colleagues
[9]. Thus the results can be compared.

They [9] describe the dataset as follows.
The MR dataset is a movie review dataset for binary sentiment

classification, in which each review only contains one sentence [10]2.
The corpus has 5,331 positive and 5,331 negative reviews. We used
the training/test split in [11]3.

The Ohsumed corpus4 is from the MEDLINE database, a bibli-
ographic database of crucial medical literature maintained by the
National Library of Medicine. In this work, we used the 13,929
unique cardiovascular diseases abstracts in the first 20,000 abstracts
of the year 1991. Each document in the set has one or more asso-
ciated categories from the 23 disease categories. As we focus on
single-label text classification, the documents belonging to multiple
categories are excluded so that 7,400 documents belonging to only
one category remain. 3,357 documents are in the training set, and
4,043 documents are in the test set.

R52 and R8 5 (all-terms version) are two subsets of the Reuters
21578 dataset. R8 has eight categories split into 5,485 training and
2,189 test documents. At the same time, R52 has 52 categories and
split into 6,532 training and 2,568 test documents. Details about the
descriptive statistics of the dataset are in Table 1.

4.1.1 Parameter explanation. The "Learning Rate" parameter
controls how much to change the model according to the estimated
error. If the value of the learning rate is small, it will take longer to
train a model. If it is large, the result calculated as the optimal could
be the non-optimal result.

1Original code available at https://github.com/yao8839836/text_gcn - Accessed on
October, 27th 2020
2http://www.cs.cornell.edu/people/pabo/movie-review-data/ - Accessed on October,
27th 2020
3https://github.com/mnqu/PTE/tree/master/data/mr - Accessed on October, 27th 2020
4http://disi.unitn.it/moschitti/corpora.htm - Accessed on October, 27th 2020
5https://www.cs.umb.edu/~smimarog/textmining/datasets/ - Accessed on October, 27th
2020

Table 1: Summary statistics of datasets.

MR Ohsumed R8 R52
# Docs 10,662 7,400 7,674 9,100

# Training 7,108 3,357 5,485 6,532
# Test 3,554 4,043 2,189 2,568

# Words 18,764 14,157 7,688 8,892
# Nodes 29,426 21,557 15,362 17,992

# Classes 2 23 8 52
Average Length 20.39 135.82 65.72 69.82

"Epochs" can be seen as iterations where the dataset passes
through the neural network. Each epoch corresponds to the dataset
been passed forward and backward to the neural network completely.

"Hidden 1" is the parameter to set the number of neurons in the
layer N. In this case, the number of neurons in layer 1. This layer is
"hidden" because it is not the input layer nor the output layer.

"Dropout" is a technique to regularize the network. It reduces the
model’s overfitting by "turning off" some neurons randomly.

"Weight Decay" is another technique to reduce overfitting. It
consists of a number that penalizes the complexity of the model in
training.

"Early Stopping" is a technique to avoid the model to be trained
more than needed. When training a model more than needed, the loss
function increases and makes it harder to find the optimal solution.

The default configuration is similar to the configuration defined
by Yao and colleagues [9], which is in Table 2. The difference is that
the number of epochs is 10000 instead of 200.

Table 2: The default configuration of the GCN defined by the
authors of TextGCN [9]

Parameter Description Default Value

Model Model String gcn
Learning Rate Initial learning rate 0.02

Epochs Number of epochs to train 200

Hidden 1
Number of units
in hidden layer 1 200

Dropout
Dropout rate

(1 - keep probability) 0.5

Weight Decay
Weight for L2 loss on

embedding matrix 0

Early Stopping
Tolerance for early

stopping (# of epochs) 10

4.1.2 Experiment methodology. This paper studied the parame-
ters: Early Stopping, Learning Rate, Dropout, and Hidden 1. There-
fore, the other parameters are their default values (GCN for the
Model and 0 for the Weight Decay). The maximum number of
epochs is 10000 instead of the original 200 proposed by [9]. Notice
that it can run fewer epochs if the early stop trigger. Therefore there
is no guarantee that the 10000 will run. Table 3 shows the parameters
used in each experiment run. If another parameter displayed in Table
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2 is not in Table 3, all experiments will use the default value. The
only exception is the number of epochs that is 10000 instead of 200.

The experiment consists of a variation of a parameter to evaluate
its impact on the results. Experiment 0 is the default configuration
proposed by Yao and colleagues [9]. Consequently, it is the baseline.

Each experiment was executed ten times. There was no change
in the loss function in these Experiments neither in the number of
hidden layers, which was the same used and described originally by
Yao and colleagues [9].

The experiment consisted of 19 configurations. All data were
collected and analyzed using a set of scripts made available at a
GitHub repository. In this repository, there are the scripts and the
results achieved.6.

Table 3: Experiment configurations used. Each line is a setup of
a experiment that was executed 10 times for each dataset.

Name Learning Rate Hidden 1 Dropout Early Stopping Evaluate
ES10 0.02 200 0.5 10

Early
Stopping

ES100 0.02 200 0.5 100
ES1000 0.02 200 0.5 1000

LR01 0.1 200 0.5 10
Learning

Rate
LR001 0.01 200 0.5 10
LR0001 0.001 200 0.5 10

LR00001 0.0001 200 0.5 10

DO01 0.02 200 0.1 10

Dropout

DO02 0.02 200 0.2 10
DO03 0.02 200 0.3 10
DO04 0.02 200 0.4 10
DO05 0.02 200 0.5 10
DO06 0.02 200 0.6 10
DO07 0.02 200 0.7 10
DO08 0.02 200 0.8 10
DO09 0.02 200 0.9 10

HD50 0.02 50 0.5 10
Hidden 1HD350 0.02 350 0.5 10

HD500 0.02 500 0.5 10

4.2 Experiment results
After executing all experiments, a script available in the GitHub
repository6 processed them. A T-test for means of two independent
samples from descriptive statistics7 is the statistical test used to com-
pare if the means were equal (Null hypothesis) or not (Alternative
hypothesis). This script compares the results of each experiment and
the results from the paper [9]. In the paper, due to the page limit, just
the best result of each dataset is discussed.

4.2.1 Reproducing the original experiment. Initially, a com-
parison between the results from the paper [9] and ES10 must exist
to evaluate if the results from [9] are reproducible since they use the
same parameters.

Table 4 compares the original experimental results made by [9]
and the experiments run by the authors. It is possible to notice that
the T-test, at the alpha value of 0.05, fails to reject the null hypothesis
that the means are equal in three datasets (Ohsumed, R8, and R52).
6https://github.com/HenriqueVarellaEhrenfried/AnalysisResultsTextGCN - All results
and scripts to analyze them - Accessed October 30th 2020
7https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind_from_stats.
html#scipy.stats.ttest_ind_from_stats - Documentation of the T-Test used - Accessed
October 27th 2020.

Table 4: Results achieved vs results from the original paper
([9]). Exp stands for Experiment. Orig stands for Original,
which means the data from the paper [9]. The number after the
"±" sign is the standard deviation. The P-Value column refer to
the T-test for means of two independent samples from descrip-
tive statistics. To know the parameters used in this experiment,
please refer to the Table 3.

Dataset MR Ohsumed R8 R52
Exp name ES10 ES10 ES10 ES10
Exp Mean 0.7593 ± 0.0008 0.6869 ± 0.0033 0.9716 ± 0.0015 0.9366 ± 0.0019
Orig Mean 0.7674 ± 0.0020 0.6836 ± 0.0056 0.9707 ± 0.0010 0.9356 ± 0.0018

P-Value 5.546869e-08 0.1204304282 0.1147659345 0.2280961891
Confidence Level 99.9999% 87.9570% 88.5234% 77.1904%

Higher Mean Original Experiment Experiment Experiment
Diff (Exp-Orig) -0.0081 0.0033 0.0009 0.0010

This result is the expected behavior since the same settings applied
in both experiments (original and this paper’s experiment) are the
same. Therefore, this paper’s authors expected the same results
since an assumption is that the experiments conducted by [9] are
reproducible.

The unexpected is the result of the MR Dataset. It is inferior to the
original result, and the null hypothesis of the T-test can be rejected
with a confidence level of 99.9999%. Therefore, we were unable
to reproduce the experiment with the MR dataset. Even though, we
proceeded as planned and executed all experiments with the MR
dataset.

4.2.2 All results. After investigating the reproducibility of the
results, the other experiments could go on. The best results were
compared to the original paper result. In this comparison, the results
achieved were statistically tested if they are the same or not, as
described previously. The results of the statistical tests are in Table
5.

All the results are in Table 6, which spotlights the best results of
each dataset. Additionally, the chart in Figure 3 shows the results of
each experiment graphically.

Table 5: Best results. Exp stands for Experiment. Orig stands
for Original, which means the data from the paper [9]. The
number after the "±" sign is the standard deviation. The P-
Value column refers to the T-test for means of two indepen-
dent samples from descriptive statistics. To know the parame-
ters used in this experiment, please refer to the Table 3.

Dataset MR Ohsumed R8 R52
Exp Name DO08 DO01 LR001 ES1000
Exp Mean 0.7612 ± 0.0009 0.6886 ± 0.0018 0.9736 ± 0.0007 0.9383 ± 0.0013
Orig Mean 0.7674 ± 0.0020 0.6836 ± 0.0056 0.9707 ± 0.0010 0.9356 ± 0.0018

P-value 8.299081e-07 2.131075e-02 6.360535e-07 1.153807e-03
Confidence Level 99.9999% 97.8689% 99.9999% 99.8846%

Higher Mean Original Experiment Experiment Experiment
Diff (Exp-Orig) -0.006173 0.004998 0.002940 0.002678

It is possible to notice that each dataset’s results tend to be numer-
ically similar, with some exceptions, as shown by the chart in Figure
3. An observation of this chart reveals that the increase in the early
stop makes the average decrease considerably (A delta of 0.0483)
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Table 6: All results of the experiments. The best results are highlighted in dark blue. The number before the sign ± is mean, and after
it is the standard deviation. Each experiment runs ten before its descriptive statistics were measured.

Name MR Ohsumed R8 R52
Accuracy Epochs Accuracy Epochs Accuracy Epochs Accuracy Epochs

ES10 0.7593 ± 0.0008 18.0 ± 0.0000 0.6869 ± 0.0033 78.4 ± 1.2000 0.9716 ± 0.0015 92.6 ± 4.3174 0.9366 ± 0.0019 131.9 ± 10.1139
ES100 0.7235 ± 0.0011 102.0 ± 0.0000 0.6862 ± 0.0022 126.6 ± 0.6633 0.9694 ± 0.0010 144.7 ± 2.6476 0.9373 ± 0.0013 204.2 ± 6.1935
ES1000 0.7110 ± 0.0011 1002.0 ± 0.0000 0.6713 ± 0.0014 1002.0 ± 0.0000 0.9662 ± 0.0011 1002.0 ± 0.0000 0.9383 ± 0.0013 1012.4 ± 2.0100
LR01 0.7523 ± 0.0028 12.0 ± 0.0000 0.6782 ± 0.0045 28.4 ± 0.6633 0.9650 ± 0.0016 32.3 ± 2.0025 0.9294 ± 0.0032 49.3 ± 2.1932
LR001 0.7592 ± 0.0011 29.1 ± 0.3000 0.6864 ± 0.0032 127.4 ± 2.7276 0.9736 ± 0.0007 145.5 ± 7.5000 0.9343 ± 0.0022 215.9 ± 15.5271

LR0001 0.7602 ± 0.0010 191.3 ± 0.4583 0.6766 ± 0.0017 1014.4 ± 25.4016 0.9712 ± 0.0007 1198.2 ± 36.7500 0.9234 ± 0.0039 1721.0 ± 132.7275
LR00001 0.7606 ± 0.0008 1803.2 ± 4.8332 0.6710 ± 0.0025 9268.1 ± 234.2428 0.9709 ± 0.0005 9006.5 ± 185.9275 0.8935 ± 0.0015 10000.0 ± 0.0000

DO01 0.7565 ± 0.0012 17.9 ± 0.3000 0.6886 ± 0.0018 73.9 ± 0.9434 0.9725 ± 0.0010 87.3 ± 2.9000 0.9380 ± 0.0009 130.4 ± 5.5172
DO02 0.7573 ± 0.0007 18.0 ± 0.0000 0.6879 ± 0.0019 74.5 ± 1.2845 0.9721 ± 0.0008 88.9 ± 2.3854 0.9373 ± 0.0016 131.5 ± 8.2614
DO03 0.7581 ± 0.0007 18.0 ± 0.0000 0.6884 ± 0.0015 76.1 ± 0.9434 0.9718 ± 0.0011 90.2 ± 3.0919 0.9368 ± 0.0012 131.1 ± 6.8037
DO04 0.7586 ± 0.0009 18.0 ± 0.0000 0.6874 ± 0.0012 76.8 ± 1.4697 0.9725 ± 0.0010 90.1 ± 4.3232 0.9371 ± 0.0018 133.9 ± 6.3000
DO05 0.7590 ± 0.0009 18.1 ± 0.3000 0.6866 ± 0.0016 78.2 ± 1.3266 0.9727 ± 0.0014 91.6 ± 3.4409 0.9372 ± 0.0019 132.6 ± 10.9654
DO06 0.7595 ± 0.0006 18.9 ± 0.3000 0.6853 ± 0.0019 79.8 ± 1.2490 0.9730 ± 0.0009 88.7 ± 4.1243 0.9342 ± 0.0019 131.4 ± 9.6768
DO07 0.7603 ± 0.0015 19.0 ± 0.0000 0.6862 ± 0.0028 82.8 ± 2.0881 0.9723 ± 0.0007 97.7 ± 4.2673 0.9340 ± 0.0033 135.0 ± 11.0454
DO08 0.7612 ± 0.0009 20.0 ± 0.0000 0.6841 ± 0.0031 87.2 ± 1.1662 0.9725 ± 0.0013 95.3 ± 5.5507 0.9327 ± 0.0041 140.5 ± 11.8849
DO09 0.7612 ± 0.0016 21.5 ± 0.5000 0.6820 ± 0.0033 98.7 ± 3.5791 0.9719 ± 0.0019 102.7 ± 5.3113 0.9260 ± 0.0033 147.0 ± 14.1492
HD50 0.7593 ± 0.0012 27.9 ± 0.3000 0.6787 ± 0.0019 131.3 ± 6.2618 0.9714 ± 0.0019 149.5 ± 12.9402 0.9237 ± 0.0061 228.2 ± 27.0695
HD350 0.7588 ± 0.0011 16.0 ± 0.0000 0.6875 ± 0.0021 65.2 ± 1.3266 0.9714 ± 0.0010 76.0 ± 2.0494 0.9375 ± 0.0020 110.3 ± 4.0509
HD500 0.7589 ± 0.0011 14.0 ± 0.0000 0.6880 ± 0.0018 57.0 ± 0.7746 0.9703 ± 0.0007 68.9 ± 2.6627 0.9374 ± 0.0011 102.6 ± 6.5452

Figure 3: TextGCN average accuracy results for each experiment and dataset. Blue line (solid line with dot markers) shows the
results of the MR Dataset, Yellow line (dashed line with triangle-shaped marker) shows the results of the Ohsumed dataset. Green
line (dashdot line with square-shaped marker) shows the results of R8. Red line (dotted line with diamond-shaped marker) shows the
results of R52. Notice that with some exceptions, all results of a dataset, numerically, tends to be similar.

on the MR Dataset. However, the other parameters do not seem to
affect the results as much.

On the Ohsumed dataset, experiments that changed the early
stop, and the learning rate presented different results. The other
experiments achieved similar results. The exception is the Hidden 1,
in which the higher the number of nodes, the better.

On the R8 dataset, the early stop parameter seems to affect the
results of the model slightly. All the other experiments obtained
similar results. Even the best result (when the Learning Rate was
0.01) has small improvements over the other experiments.

On the R52 dataset, different settings resulted in different results.
This dataset seems to be very sensitive to the Learning Rate parame-
ter, achieving a delta of 0.0408. It also showed to be slightly sensitive
to other parameters: Dropout achieved a delta of 0.012, and Hidden
1 delta is 0.0115.

The level of confidence showed in Table 5 allows the authors to
say that if a user makes some parameter tuning of the TextGCN,
better results are possible. Some suggestions to start tuning the
parameters of the TextGCN model for each dataset, based on the
data retrieved by the experiments conducted are in Table 7.
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Notice that the described parameters in Table 7 are guesses ori-
ented by the results of the experiments showed. Therefore they may
not improve the results of further experiments.

Table 7: Suggestions of parameters to start tuning the model
for each dataset

Dataset Early Stop Learning Rate Dropout Hidden 1
MR ES ≤ 10 LR ≤ 0.00001 0.8 ≤ DO ≤ 0.9 HD ≥ 500

Ohsumed ES ≤ 10 LR ≈ 0.01 DO = 0.9 HD ≥ 500
R8 ES ≤ 10 LR ≈ 0.01 DO = 0.6 50 ≤ HD ≤ 350
R52 ES = 100 LR ≈ 0.01 DO = 0.1 HD ≈ 350

5 CONCLUSIONS
This work’s objective is to present the impact of each studied pa-
rameter in the TextGCN model. In the process, a methodology was
adopted to compare them. The authors expect that newer methods
and models present this kind of data in the future. So the use of
newly developed techniques could be higher since the optimization
process to a specific use would be easier.

The experiments were unable to provide support to a global opti-
mal configuration of the TextGCN that could be used in all datasets,
with the same success rate. Some datasets can benefit from lower
Dropout, some from higher Dropout, and some do not change with
Dropout change. Thus, it is essential always to analyze the impact
of each parameter in the target dataset. This analysis can help the
user of a model improve their model’s performance with an oriented
guess, guiding them to the best parameters.

Another observation made during the experiments is that it does
not matter the parameters used in each dataset (in the context of the
experiments executed)—the impact of each parameter alone tends to
be very small. We made the same statistical test between the results
achieved, but the numerical difference is not significant to justify the
comparison. All these tests are available in the GitHub repository.
However, there are scenarios that the parameters can present negative
impacts. Examples of such scenarios are when Early Stop is 1000
and when the Learning Rate is set to 0.0001.

The achieved consistency in the results could be because of the
shape of the modelled graph. We speculate that the type of docu-
ments is which leads to these results. R8 and R52 are text documents
that contain fewer different words, while the Ohsumed and the MR
are datasets that contain more variability in the text. Observe that
even though the R52 has more documents than Ohsumed, R52 has
fewer words, as Table 1 shows. Once there is less variability in the
data, graphs diameters tend to be smaller because each node interacts
with less different nodes. This event allows the accessibility of the
entire datasets with fewer GCN layers while training. As the experi-
ments used only 2 GCN layers, as Yao and colleagues did, graphs
with big diameter may not achieve the best performance. This topic
needs further investigation in future work.

During this work, the variability in the settings leading to better
results drew the attention. TextGCN’s authors [9] could have better
results if the authors experimented with different sets of parameters,
although this improvement is not expressive. The evidence is that in

just analyzing how each parameter affected each dataset, it was pos-
sible to improve three datasets’ results. Therefore, future work can
investigate how accurate the suggestions made in Table 7 were and
how good the TextGCN is in other domains. In further investigation,
aiming to enhance the TextGCN results, a relevant issue highlighted
by this work is the potential of the relationship between the graph
and the model used to classify it.
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