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ABSTRACT 

Computer vision plays an important role in intelligent systems, 

particularly for autonomous mobile robots and intelligent 

vehicles. It is essential to the correct operation of such systems, 

increasing safety for users/passengers and also for other people in 

the environment. One of its many levels of analysis is semantic 

segmentation, which provides powerful insights in scene 

understanding, a task of utmost importance in autonomous 

navigation. Recent developments have shown the power of deep 

learning models applied to semantic segmentation. Besides, 3D 

data shows up as a richer representation of the world. Although 

there are many studies comparing the performances of several 

semantic segmentation models, they mostly consider the task over 

2D images and none of them include the recent GAN models in 

the analysis. In this paper, we carry out the study, implementation 

and comparison of recent deep learning models for 3D semantic 

image segmentation. We consider the FCN, SegNet and Pix2Pix 

models. The 3D images are captured indoors and gathered in a 

dataset created for the scope of this project. Our main objective is 

to evaluate and compare the models’ performances and efficiency 

in detecting obstacles, safe and unsafe zones for autonomous 

mobile robots navigation. Considering as metrics the mean IoU 

values, number of parameters and inference time, our experiments 

show that Pix2Pix, a recent Conditional Generative Adversarial 

Network, outperforms the FCN and SegNet models in the 

considered task. 

KEYWORDS 
Computer Vision, Deep Semantic Segmentation, RGB-D Images, 

Autonomous Mobile Robots’ Navigation 

1 INTRODUCTION 

The rapid progress of technical and scientific knowledge related 

to artificial intelligence and robotics allowed the development of 

disruptive technologies like autonomous vehicles. This technolo-

gy, although very practical and with many promising applications, 

still faces some limitations that can lead to errors in operation, 

with severe consequences, also, related to people safety.  

In 2018, a self-driving Uber car hit and killed a cyclist because 

of an error in its vision system, which couldn't recognize that 

object as a cyclist or pedestrian, and incorrectly calculated its 

trajectory and the time for activating the brakes. The authorities 

concluded that the error occurred because the car "lacked the 

capability to classify an object as a pedestrian unless that object 

was near a crosswalk" [1]. Another event, also occurred in 2018, 

involved a Tesla semi-autonomous vehicle in auto-pilot mode, 

which accelerated directly to a barrier in the highway. The driver 

suffered fatal consequences. The authorities agreed that the 

accident occurred because "the collision avoidance system was 

not designed to detect the crash [barrier]" [2]. 

Motivated by reducing the chances of events like these to 

happen and inspired by the current effort in study and 

development related to autonomous vehicles, which can also be 

classified as autonomous mobile robots, we seek to simulate and 

compare, on a reduced scale, the operation of such systems, 

concerning the role of computer vision methods in scene 

understanding. 

Since one of the main characteristics of such systems is the 

interaction with the environment, computer vision is of utmost 

importance for their correct and safe operation, as it provides an 

interface between the robot and the world. Defined as the 

transformation of data from a still or video camera into either a 

decision or a new representation [3], computer vision provides us 

with many methods, or levels, of image analysis (Fig. 1). When 

considering scene understanding, a particularly powerful method 

is semantic segmentation. Defined as the process of associating 

each pixel of an image with a class label [4], semantic 

segmentation allows to figure out what is in the image at pixel 

level [5]. 

 
Figure 1: Levels of analysis in computer vision: classification 

(a), classification with localization (b), detection (c), semantic 

segmentation (d) and instance segmentation (e). Adapted 

from: <https://bit.ly/2Cg4mAn>. 

Classical approaches of semantic segmentation demanded 

complex and time-consuming hand-engineered pipelines for 
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feature extraction and classification – thresholding, edge detection 

and the K-means algorithms are some examples [6]. However, the 

advent of deep learning and, more precisely, the convolutional 

neural networks have permitted the automation of that pipeline, 

naturally performing hierarchical feature extraction and 

classification through end-to-end learning. This advance allowed 

semantic segmentation to achieve great progress in recent years. 

The first important work in deep semantic segmentation was the 

Fully Convolutional Networks (FCNs) [7], which proposed an 

end-to-end approach to pixel-wise classification by replacing fully 

connected layers by their equivalent convolutional ones. Another 

prominent work in this field is SegNet [8], an encoder-decoder 

architecture, primarily motivated by road scene understanding 

applications, which introduced the concept of pooling indices to 

encapsulate boundary information throughout the network. 

These models are often used as baselines in comparative 

studies on deep semantic segmentation available in the literature 

[9-11]. One common aspect of these works is that they compare 

variations of well-known and accepted architectures, such as 

VGG16 [12] and UNet [13]. 

Currently, though, another breakthrough architecture emerged: 

the Generative Adversarial Networks (GANs) [14]. With 

applications ranging from high resolution image synthesis [15-16] 

to image segmentation [17], they represent a promising base for 

future developments in the field of computer vision. Throughout 

the years, several GAN based architectures were proposed [15, 16, 

18]. Pix2Pix [19], which has particularly attracted a lot of 

attention, is an example of a Conditional GAN. Its main character-

istic is that it considers the input as part of the loss calculation, 

allowing it to fit to a wide range of image-to-image applications – 

reason why this type of loss is known as adaptive loss. 

Therefore, one of the main contributions of this paper is our 

analysis of promising and currently widely used GANs, in 

addition to famous deep semantic segmentation models, such as 

FCN and SegNet. This is done in order to evaluate the impact of 

the advances in architectural designs in the performance of deep 

semantic segmentation tasks. 

Another point to note is that all the works aforementioned 

conduct the analysis based on datasets composed by 2D images. 

In fact, great part of the progress made in deep semantic 

segmentation is due to the proposition of various large annotated 

datasets for 2D semantic image segmentation [20-21], some of 

them specifically created for autonomous driving use cases [22-

23]. The choice to use 2D data was mainly driven by the 

inaccessibility of sensors for 3D data acquisition years ago. 

However, cheaper sensors have permitted a growing accessibility 

to different data representation types, other than 2D images. One 

example is the Microsoft Kinect [24] sensor, which permits the 

capture of 3D data and other types of image representation by an 

accessible cost.  

As a richer representation of the world, 3D data (RGB-D 

images, point clouds and depth-maps) describe the environment 

with the additional information of depth. A particular type of 3D 

data is the RGB-D – sometimes called 2.5D - representation, 

which incorporates scene depth into the image structure, i.e. 

encoded in the color channels. With this approach, models 

originally engineered to work with 2D RGB images can leverage 

the additional depth information of the RGB-D data to improve 

their performances with no need for modifications [25]. 

Hence, another important contribution of this work is the 

analysis of the models on 3D data, more precisely RGB-D images. 

Instead of using one of the publicly available RGB-D datasets, 

frequently aimed at indoor object segmentation [26-27], we 

choose to create our own dataset. This was done because we 

wanted to, instead of just detecting objects, add context 

information by simulating a navigation path for an autonomous 

mobile robot, with the safe zone, the borders and the obstacles. 

We analyze the performance of each model in the task of 

segmenting safe and unsafe zones for navigation, borders and 

obstacles, considering the 3D data (new approach). We compare 

them with regards to mean IoU value, memory/disk space demand 

and inference time, critical issues when choosing robust and 

precise models to embed in autonomous mobile robots. We also 

evaluate the results qualitatively, through visual inspection of the 

resultant segmentations. 

The remainder of the paper is organized as follows. In Section 

2, we review related recent works. We detail the methodology 

adopted in Section 3. In Section 4, we describe our experiments. 

We present the results and evaluate the performances of the 

models on our RGB-D indoor simulated road scene dataset in 

Section 5. Finally, we conclude the paper and present a discussion 

regarding our approach and alternative directions to future work 

in Section 6. 

2 RELATED WORK 

Semantic segmentation is an active topic of research and has been 

widely applied to many different fields, ranging from medicine 

[28-29] to autonomous navigation [30-31], a topic of research and 

development with great popularity nowadays. 

Fueled by diverse large datasets of 2D annotated images [22, 

23, 32, 33], the research on deep convolutional models for 

semantic segmentation (deep semantic segmentation) has 

achieved significant results in recent years [7-8]. 

These developments paved the road for many other works in 

the field, so that the literature currently presents several deep 

learning architectures, models and approaches to semantic 

segmentation [25, 34]. 

Given this context, several studies have explored the problem 

of comparing different deep learning algorithms available for 2D 

semantic image segmentation. In [9], a comparative study of FCN 

model and its variants is performed, based on accuracy and 

training time metrics. In [10], a real-time semantic segmentation 

benchmarking framework with a decoupled design for feature 

extraction and decoding methods is presented. The authors 

conduct experiments with different combinations of feature 

extractors and decoders, both composed by well-known deep 

learning architectures like VGG16, MobileNet [35] and UNet. 

Finally, they present a comparative analysis of the different 
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combinations based on IoU and efficiency with respect to the 

computational cost (number of operations) of running the models. 

In [11], a similar analysis is performed, but using the running time 

and IoU values as metrics. 

Additionally, the advent of low cost RGB-D sensors, like the 

Microsoft Kinect, permitted to incorporate depth information in 

RGB images as a means of improving performance of models 

originally designed for 2D segmentation and detection tasks. In 

[36-37], the authors show that RGB-D images represent up to 6% 

improvement in comparison with RGB-based approaches for 

semantic segmentation. In [38] is proposed a method based on 

RGB-D images that achieves 59% improvement over the SegNet 

model on the SUN RGB-D dataset [26]. This stimulated the 

proposition of various RGB-D datasets. Some examples are [26, 

39]. 

In [36] an extensive survey on indoor RGB-D semantic 

segmentation is presented. The authors evaluate the performance 

of different approaches, ranging from hand-crafted feature 

analysis to deep convolutional models. The evaluation is 

performed taking into account the pixel accuracy and the mean 

intersection over union value over different RGB-D datasets [26, 

39, 40]. 

All the aforementioned comparative works focuses on famous 

and well accepted deep convolutional approaches. However, 

recent developments in Generative Adversarial Neural Networks 

[14] supplied the research community with a powerful tool for 

further developments in image synthesis [15, 16, 18], autonomous 

driving [41] and semantic segmentation [17, 42, 43], to mention 

some. A particularly distinct work applied a conditional term to 

the GAN architecture in order to create the Pix2Pix model, which 

has as its main characteristic the adaptability to a wide range of 

image-to-image translation scenarios [19]. 

Inspired by the aforementioned works and the current 

developments and popularity of autonomous driving, we conduct 

a comparative analysis on deep semantic segmentation methods 

applied to autonomous navigation. Like the previous studies, we 

analyze the models in terms of mean IoU values and inference 

time; we additionally consider the efficiency with regards to the 

model size (number of parameters). Similarly to [36], we evaluate 

the models in the task of RGB-D semantic image segmentation; 

unlike it, though, we construct our own dataset, comprised of 562 

RGB-D images from indoor scenes, gathered with a Kinect 

sensor. This project choice was made in order to simulate, in 

reduced scale, the elements of an urban driving context - safe 

zone/unsafe zones, border and obstacles. Finally, unlike previous 

works, and as our main contribution, we add a GAN-based model 

(Pix2Pix [19]) to the set of evaluated methods.  

We hope that the use of depth information can help learning 

the segmentations for the elements in the scene - road, borders and 

obstacles. Besides, the addition of a GAN-based model was 

intended in order to evaluate the performance of a new, powerful 

and extremely adaptable architecture front state-of-the-art 

methods in deep semantic segmentation.   

3 METHOD 

The models were trained end-to-end through supervised learning. 

To this end, we first created an entirely new dataset, comprising 

RGB-D images and its correspondent annotations. We after 

implemented and trained the models to perform semantic 

segmentation on this brand new dataset. Finally, we evaluated and 

compared the results with regards to precision and robustness 

based on different performance metrics. 

3.1 Data Acquisition 

We used the Microsoft Kinect V2 sensor (Fig. 2) in order to 

obtain the data. Using its “Kinect for Windows Software 

Development Kit” (SDK), we captured different scenario settings. 

 
Figure 2: Microsoft Kinect V2 sensor and its components. 

Constructed in indoor environment, these scenarios simulated, 

in reduced scale, elements of an urban driving context, like a 

street (plane ground), its borders (PVC tubes) and possible 

obstacles (objects available in the laboratory). As the main 

objective of this work is to study the suitability of different 

semantic segmentation approaches to autonomous mobile robots, 

we simulated its navigation by placing the Kinect sensor on top of 

a mobile robot, to capture its perspective. We then simulated 

several setups for navigation, by changing the angles and heights 

of the sensor, as well as building different “street” configurations. 

Fig. 3 shows an example of the pipeline used for data acquisition.  

 
Figure 3: Pipeline used for data acquisition. 

We collected 562 RGB-D images (Fig. 4 (a)). In this type of 

data representation, the depth information is structurally stored in 

one of the color channels. To better visualize the depth 

information of the scene, the images were converted to the HSV 

color space, which gives us the correspondent depth map 

representation (Fig. 4 (b)). 
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Figure 4: Example of image captured with the Kinect sensor 

and its correspondent depth map in the HSV color space. 

3.2 Data Annotation 

In supervised learning, there are two main elements: the input and 

the expected output, also known as ground truth. The ground truth 

is a translated representation of the input, i.e. the target, which 

depends on the application. In our case, it consists of label maps, 

or annotations, of the inputs.  

The process of annotating or labeling an image consists in the 

association of each pixel to a class. To this end, we’ve used an 

annotation tool called LabelMe [44], a free software that 

implements a friendly interface for image annotating (manual 

annotation step – Fig. 3). The original image superimposed with 

the labels and also the final label map used as ground truth in the 

dataset are depicted in Fig. 5. 

  
Figure 5: Overlapping of labels on the original image, with 

description of the classes considered, and map of labels to be 

used when training the models. 

3.3 Model Implementations 

The models were implemented using Python [45], Tensorflow 

[46] and the Keras API [47]. 

3.3.1 Fully Convolutional Networks (FCNs) 

Proposed in [7], this architecture has as its main characteristic the 

absence of densely connected layers. This is achieved by 

converting all the original dense layers of a base model into their 

equivalent convolutional ones, in a process called 

“convolutionalization”. Therefore, instead of an array of 

probabilities, it outputs dense predictions composed by matrices, 

called heatmaps. Each heatmap is related to a class and contains 

the probabilities of each pixel to belong to that class – for 

instance, in an application with 21 possible classes, the output will 

be composed by 21 heatmaps, each one with the same dimensions 

(height x width) of the input image. 

The authors also introduce three variants of the architecture: 

32s, 16s and 8s. Each variant is related to how the output is 

generated. In the first case, the output is generated by directly 

upsampling the pixel-wise predictions using a stride of 32 (32s), 

so that the predictions match the dimensions of the input. In the 

other cases (16s and 8s), before being upsampled, the output 

pixel-wise predictions are combined with coarser feature maps, 

obtained from earlier layers in the network.  

The main insight of this approach is to combine structural 

features (earlier layers) with semantic features (final layers) 

through skip connections, in order to obtain a more detailed 

output prediction. 

Besides implementing the model based on a VGG16 core, 

proposed by the authors, we extended the concepts to a DenseNet 

[48] core. For both base models, we used the implementations 

available in Keras [49-50]. 

3.3.2 SegNet 

Proposed in [8], the SegNet model consists of a convolutional 

encoder-decoder architecture; the encoder uses as base model the 

feature extractor – model without classification head - of the 

VGG16 architecture. Its key concept is related to the decoder and 

how the upsampling operation is performed.  

Motivated by scene comprehension tasks and designed to be 

efficient both in terms of memory used and inference time, the 

network has a reduced number of parameters, thanks to the 

concept of pooling indices, introduced by the authors. 

The pooling indices encapsulate the position of the terms 

selected during the max pooling operation in a given encoder 

block. Then, in the correspondent decoder block, that information 

is used to perform the upsampling, generating a sparse feature 

map. In this feature map, the non-zero values are stored in the 

positions indicated by their correspondent pooling indices. After 

that, a convolution with learnable weights is applied, finally 

generating a dense feature map. 

The use of pooling indices is justified to retain information 

related to the contour of the extracted image representation, so 

that the model not only produces smooth segmentations for large 

classes, but also precisely delineates small objects. 

The model was developed using the VGG16 implementation 

also available at [49]. 

3.3.3 Pix2Pix 

Proposed in [19], this model consists in a framework for image-

to-image translations. It is based on the Conditional Generative 

Adversarial Networks (cGAN), which unlike the standard GANs 

[14] considers the inputs as part of the loss calculation. This 

characteristic allows the model to be suitable to a wide variety of 

applications. 

As semantic segmentation can be defined as the process of 

classifying an image at pixel level, we can naturally consider 

using the Pix2Pix model for semantic segmentation tasks, as it 

operates in a similar level of image-to-image translation. 
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The Pix2Pix model was implemented based on the code 

available at [51], with some changes to adapt it to the current 

application. 

4 EXPERIMENTS 

After creating the dataset and implementing the models, we 

followed to the training step. During the experiments, we studied 

the influence of different batch sizes in the models’ performances. 

4.1 Performance Metrics 

4.1.1 Mean Intersection Over Union (mean IoU) 

Also known as Jaccard Index, the intersection over union (IoU) 

metric is one of the most commonly used when evaluating 

semantic segmentation models [9, 10, 11, 36]. It can be defined as 

the area of overlap between the predicted segmentation and the 

ground truth, divided by the area of union between them [52] (Fig. 

6). The average value of this metric, also called mean IoU, is 

calculated as the average of the IoU values obtained for each class 

considered in the problem. 

 
Figure 6: IoU calculation visualized [50]. 

4.1.2 Model efficiency 

We also evaluated the models’ efficiencies, based on their mean 

IoU value and total number of parameters, either trainable or not. 

The logic behind this measure works basically as follows: the 

fewer the number of parameters and the higher the value of mean 

IoU, the more efficient the model. 

4.1.3 Inference Time 

We finally evaluated the models based on their inference time on 

the test set; that is, the time taken for a given RGB-D image to be 

translated to its correspondent segmentation. This is an important 

analysis since the faster the prediction, the more time the system 

has to plan an act in order to recover from a potentially dangerous 

situation.   

4.2 Environment Setup 

The models were trained on an Acer Nitro 5 notebook with the 

configuration presented in Table 1. To configure and manage the 

package dependencies we used virtual environments. 

 

Processor Intel Core i5-8300H 

Memory (RAM) 8GB 

GPU NVIDIA GeForce 1050 

Operating System Windows 10 

Table 1: Environment configuration. 

4.3 Dataset Setup 

The distribution of the dataset into training, validation and test 

sets is depicted in Fig. 7. In order to increase the number of 

training examples, the data augmentation technique was also used 

to generate synthetic samples. This technique consists in applying 

transformations to the original data, in order to obtain a greater 

variety of representations. The types of transformations applied in 

the context of this project were: horizontal and vertical 

translations, rotation and horizontal flip (Fig. 8) 

 
Figure 7: Number of examples per subset (train, validation 

and test). 

4.4 Training 

All models were trained from scratch, for 50 epochs and using the 

SGD optimizer with default parameters (learning rate = 0.01, 

momentum = 0.0). In order to study the hyper parameters’ 

influence in model performance, we trained the variants with 2, 4 

and 8 images per batch. 

 
Figure 8: Examples of data augmentation. 
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5 RESULTS 

During the training phase, enough data was generated to carry out 

different types of analyses. First, we studied the influence of batch 

size in the performance; then we evaluated the models with 

regards to the mean Intersection Over Union (mean IoU) value, 

model size and inference time. 

5.1 Influence of Batch Size 

Fig. 9 shows that, in general, the best performances were obtained 

for the batch size set to 2, the smallest considered in the analyses. 

Although this behavior is not observed for the Pix2Pix model, 

since the model performed similarly for the three batch sizes 

tested, the value 2 can also be selected as the best one.  

In the following analyses we only consider the models trained 

with batch size 2, as it results in the best performance for all 

models. 

5.2 Mean IoU 

Considering the configurations with the best performance 

according to the previous analyses, we compared the models’ 

performances with regards to the mean IoU value obtained when 

evaluating them in the test set. 

The Pix2Pix model outperforms all other methods, with a 

result about 30% higher than the second best (Table 2).  

Model 
Mean IoU Inference 

Time (s) Mean Standard Deviation 

Pix2Pix 0.90 0.073 0.183 

FCN VGG16 32s 0.61 0.101 0.049 

FCN VGG16 16s 0.58 0.091 0.055 

SegNet 0.53 0.113 0.067 

FCN DenseNet 0.52 0.082 0.054 

FCN VGG16s 8s 0.42 0.062 0.059 

Table 2: Mean IoU and Inference time per model. 

5.3 Efficiency 

The third type of analysis addresses model efficiency with respect 

to number of parameters. This type of evaluation is justified by 

the need for precise and robust models, when considering its 

integration in the embedded computer vision system of an 

autonomous mobile robot. In other words, considering the limited 

hardware resources of an autonomous system, we are looking for 

a model with good performance in terms of mean IoU value 

(precision) and which requires the lowest storage space. 

Therefore, the higher the mean IoU value and the smaller the 

number of parameters, the more efficient the model. Equivalently, 

the lower mean IoU value and the greater the number of 

parameters, the less efficient the model. 

Following this criteria, Fig. 10 presents Pix2Pix as the model 

with highest efficiency, followed by SegNet. The choice for the 

Pix2Pix model was due to its high mean IoU value, which 

compensates the greater number of parameters with respect to the 

SegNet model. 

 
Figure 10: Efficiency of the models with respect to their mean 

IoU value and number of parameters. 

 

 
Figure 9: Evolution of neural learning, with respect to the mean IoU value, for different batch size values. 
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5.4 Inference Time 

Table 2 shows the performances of the models with respect to the 

inference time. As we can see, the best inference time was 

achieved by the FCN VGG16 32s model, which was approxima-

tely 26% faster than the Pix2Pix model (best mean IoU value). 

5.5 Visual Inspection 

The last type of analysis corresponds to a subjective assessment of 

the quality of the segmentations. Although being the simplest type 

of analysis, it provides a way to evaluate the performances in a 

more practical and intuitive manner. Therefore, it can be used 

both for an initial analysis of the models, in order to select the 

most suitable for the application in question, as well as for the 

validation of objective analysis. 

Fig. 11 shows that, even though all the models achieved 

certain success in segmenting the safe zones, borders and unsafe 

zones, they struggled at segmenting the obstacles. The only model 

that achieved almost perfect performance was Pix2Pix, what 

validates our previous analyses. It smoothly labeled classes with 

big areas in the image, as well as delineated with precision the 

smallest objects’ boundaries. 

An interesting fact to note is that even in the initial training 

epochs of the Pix2Pix model (“Pix2Pix (2 ep)” in Fig. 11), the 

results obtained were already clearly superior in precision and 

quality of segmentation, when compared to the final results 

achieved by the other models. 

6 CONCLUSION 

In this paper, we have conducted a comparative study of different 

deep learning models for RGB-D indoor semantic image 

segmentation. First, we presented computer vision as an essential 

component of autonomous mobile robots, with utmost importance 

for their correct operation and as a means of safety guarantee for 

users and other people in the environment. We then introduced 

semantic segmentation as one of the most important levels of 

analysis provided by computer vision for scene understanding. 

We walked through the advances in methodology, from hand-

crafted feature analysis to deep learning, and data available, from 

2D to RGB-D image datasets, for semantic segmentation study 

purposes. We then presented the main related comparative works. 

Second, we provided a detailed explanation of the 

methodology adopted in this work. The full pipeline for data 

acquisition and annotation for the dataset creation, model 

architectures explanation and implementation details were 

presented. 

Finally, we performed experiments comparing the models in the 

task of RGB-D deep semantic image segmentation. We first 

studied the influence of different batch sizes in performance. 

Then, we conducted a comparative evaluation of the performances 

according to both quantitative - precision (mean IoU), efficiency 

(mean IoU versus model size) and inference time – and qualitative 

– visual inspection – metrics. These metrics were chosen taking 

into account the fundamental concern with efficiency and 

reliability required from these models, for their correct and safe 

operation when incorporated in autonomous systems, preventing 

them to cause or to be involved in potentially fatal situations. 

 
Figure 11: Visual inspection and comparison of the segmented 

images, evaluated in the test set. The last row corresponds to 

the results generated be the Pix2Pix model after two epochs of 

training. The other results were generated after fifty epochs.  

The model with best results was the Pix2Pix, a GAN-based 

model. Although not providing the best inference time (Table 2), 

it was the one that best met the project's expectations in terms of 

precision (mean IoU, Table 2), efficiency (Fig. 10) and quality of 

segmentations (Fig. 11), outperforming the other methods by a 

large margin. Those characteristics configures it as the most 

suitable to be used as part of the vision system of an autonomous 

mobile robot. 

A valid observation is that we used the Kinect sensor for 

demonstration and exploratory analysis purposes. Applying it to 

real autonomous robots navigation, or even more specifically, to 

autonomous driving systems, requires the use of more precise and, 

consequently, more expensive sensors, since the data quality is 

essential to a correct operation, improving safety for users. The 

LIDAR is an example of widely used 3D sensor in autonomous 

navigation.  

As a future direction for this research, we could evaluate the 

influence of assigning different importance levels to different 

classes. For instance, the class person should be assigned more 

importance than the class sky.  

In this work, we considered the segmentation of static images, 

assuming no relationship between them. However, since in a real 

scenario the process of segmentation is performed on an input 
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video sequence, this work could be extended to consider the 

temporal correlation between the frames being processed.  

Lastly, further analysis could also study the influence of pre-

training the models in a separated RGB-D indoor dataset and then 

adapting them to the context of this work. 
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