
Parallel Testing in Behavior Driven Development
Felipe S. de Amorim

Federal Institute of São Paulo
Capivari - SP, Brazil

felipe.murin@gmail.com

Lincoln M. Costa
Computer Systems Engineering Program, Federal

University of Rio de Janeiro
Rio de Janeiro - RJ, Brazil

costa@cos.ufrj.br

Rodolfo Adamshuk Silva
Department of Software Engineering, Federal University

of Technology - Paraná
Dois Vizinhos - PR, Brazil
rodolfoa@utfpr.edu.br

Francisco Carlos M. Souza
Department of Software Engineering, Federal University

of Technology - Paraná
Dois Vizinhos - PR, Brazil

franciscosouza@utfpr.edu.br

ABSTRACT
The testing process consists of activities that demand efforts as
producing, executing, and validating test scenarios. Covering all
test scenarios manually is unfeasible since it is error-prone and
labor-expensive. Thereby, partial or complete automation reduces
costs and increases tests’ effectiveness. The increasing availabil-
ity of hardware resources provides opportunities to scale testing
using parallel execution of test cases or suites blocks. Some tools
perform parallel execution of tests, but their use requires compli-
cated settings, and when combined with some methodologies as
Behavior-Driven Development, it may create an overhead for users.
This paper presents the Multi-Threaded Testing (MTT) tool for par-
allel execution of test scenarios in the context of Behavior-Driven
Development that aims to reduce the computational time required
to test Java projects. Furthermore, the present paper reports an
experimental study to evaluate the MTT tool’s performance in
two different hardware configurations. Our results demonstrate the
MTT reached a speedup of 4,59 using ten threads in CPU Intel Core
i5-9300H with an efficiency of 46%, and a speedup of 3,45 with an
efficiency of 43% using eight threads in CPU Intel Core i7-7700HQ.

KEYWORDS
Software testing, Parallel testing, BDD

1 INTRODUCTION
Software testing is a fundamental activity to achieve and assess the
quality of software. The testing activity refers to the generation and
execution of a test data set and analyze the program behavior for
fault detection. Given its importance, in 2020, software development
companies committed around 22% of the project’s budget in quality
assurance activities [1]. This reality reflects how companies are
dealing with testing activities, applying them during all software
life-cycle. Around 52% of the companies plan and execute tests as
early as possible during the software development process [1].

The software testing process is time-consuming, expensive, and
error-prone due to its complexity in identifying scenarios in which
the program is more likely to fail. Besides that, manual testing is
practically impossible due to the high quantity of test scenarios
used for small programs. Consequently, partial or complete au-
tomation reduces costs and increases the effectiveness of tests [2].
Automated testing is the solution to ongoing testing throughout

the software development life-cycle while maintaining the tested
artifacts’ quality and assertiveness. Hence, its maximization was
encouraged in 51% of the companies in 2020 [1].

The agile development processes that support continuous inte-
gration improves continuous testing, converting it into an ever-
growing activity. For instance, a new software increment may affect
the system’s features, therefore it requires integrated testing. The
testing automation activity is inherent to software development’s
agile practices and generally employs unit tests to validate incre-
mentally small functional requirements. The testing automation is
present in techniques such as Test-Driven Development (TDD), Ac-
ceptance Test-Driven Development (ATDD), and Behavior Driven-
Development (BDD). Moreover, testing automation’s success relies
on automation tools [3].

There are many testing tools to support this activity’s essential
process. The testing automation consists of writing code that cre-
ates a test scenario, executes an action, and validates the results
according to the software specification. The Selenium is one of the
most popular tools to support functional testing (i.e., testing based
on system specification/requirements) at unit and integration levels.
The Cucumber is a platform to support the BDD technique in Java
projects. It uses the Gherkin syntax to describe each feature’s sce-
narios and supports the automation of tests based on data defined
in each scenario.

In software testing, the number of artifacts (e.g., codes, features,
class integration) impacts the number of test cases. The software
may have several features to implement and, for each one, the
creation of several scenarios is required to assure its quality. For
instance, around fifty test scenarios are executed for programs with
a few features. Therefore, for programs with a high number of com-
plex features, around five thousand scenarios must be performed.
Consequently, the time necessary to execute them may be hours or
days for more complex software.

As a solution, the tester may apply test case prioritization tech-
niques. According to Rothermel et al. [4], the prioritization of test
cases is a complex task due to the high number of parameters (or fac-
tors) that may be considered in the prioritization, and the constant
evolution of the software may require the inclusion and exclusion
of test cases, changing the prioritization order. Another solution
consists of divide test cases or suites in blocks for parallel execu-
tion [5]. Some tools support parallel execution as Selenium, Pabot,



XII Computer on the Beach
7 a 9 de Abril de 2021, Online, SC, Brasil Amorim et al.

and JMeter Parallel Controller. However, these tools’ complexity
hampers their use in contexts such as BDD. Besides that, the time
required to set up these tools may prevent their use.

This paper introduces the Multi-Threaded Testing (MTT) tool
for parallel execution of test scenarios in the context of Behavior
Driven-Development methodology. MTT aims to reduce the com-
putational time required to test Java projects that uses Cucumber as
support. Cucumber is the current state-of-the-art software testing
platform for BDD. MTT tool allows the tester to configure the par-
allel execution of test scenarios by choosing the number of threads
to execute. This configuration does not require new test cases or
already automated test cases. MTT tool uses the test information
defined by the tester and parallels the test methods’ invocation. The
configuration is simple to adapt to include new features and test
scenarios.

Overall, the contributions of the present work can be summarized
into the following points: (i) an automated test case execution tool
that uses multi-thread programming; (ii) a performance evaluation
of the proposed tool in a testing scenario context.

The remainder of this paper is organized as follows: Section 2
details the background and related work about Behavior-Driven
Development and parallel testing. Section 3 details the automated
tool proposed. Section 4 describe the performance evaluation of
the tool. In Section 5 the conclusions and future directions are
discussed.

2 BACKGROUND
In the agile process of software development, the coding and deploy-
ment of new functionalities are constant. Commonly, the deploy-
ment of a new patch affects the system’s existing features. Hence,
testing efforts increase regularly in each deployment because tests
should cover the system entirely. Agile development methodologies
increase the necessity of testing automation throughout the devel-
opment process. Automated tests simulate the end-user activities,
but a script reproduces them. Those scripts may be written in a
wide variety of programming languages.

According to A. Contan [6], automated tests should be performed
on three levels: Unit, Integrated, and User Interface. Unit tests verify
an isolated functionality of the software, and it is the base of the Test-
Driven Development (TDD). It is used to validate components such
as a class or a function. The integrated testing validates interactions
between components regarding functionality or requirement, and
it is used in Behavior-Driven Development (BDD). Finally, user
interface testing validates the software’s behavior from the end-user
perspective. It verifies characteristics such as displaying elements,
responsiveness, and interactions. Tests that involve users or the
client are used on Acceptance Test-Driven Development (ATDD).

2.1 Testing in Behavior Driven-Development
BDD is a set of practices to guide the development of software in
which the developer explores the desired system behavior with
examples in conversations with the team and formalizes them into
automated tests to guide the development [7]. In the context of Agile
development in Java projects, Behavior Driven-Development may
be applied in projects of all sizes. Most tools associated with BDD
help the developer formalize and automate parts of BDD practices.

To support the development of Java projects in BDD, Cucumber is
the best-known platform that guides the development.

BDD does not use abstract specifications though it uses examples
to explore the behavior that must-have in the system. The common
flow of development in a Java project using BDD with Cucumber
starts with creating a file .feature which describes the scenarios
using the Gherkin syntax. A scenario represents a user story of a
functional feature of the system. The Gherkin uses the keywords
Given, When, And and Then to describe steps to be executed in a
feature scenario. Figure 1 presents an example of a hypothetical
behavior using the Gherkin syntax. Therefore, given that the user
is on google.com, when the user inserts a value in the page’s text
field, then the value shown must be the same.

Figure 1: Example of a scenario on a .feature file

After defining the scenario, the last step consists of the imple-
mentation of the test scenarios. A scenario is defined using “steps"
to guide the execution. Each step is a method that follows what was
defined in the .feature file. Those steps generally are tagged with
Gherkin syntax. The@Given indicates that that block is running
a precondition.@When is where the user actions are described to
fulfill the scenario objective. In @Then, the assertions validate the
scenario results. The tag @And may be used along with any other
to include multiple lines within that section. Other testing tools
may be used to support the execution as Selenium to interact with
the web interface and JUnit or TestNG to make assertions about the
result. Figure 2 presents the implementation of the behavior shown
in Figure 1. Each step is a method that uses the SeleniumWebDriver
tool to interact with the web page and TestNG to make assertions.
In this testing scenario, the script will open a web browser, insert a
number in the variable thread number, and validate if this number
is the same as the text field.

Figure 2: A scenario implementation on a Java class

317



XII Computer on the Beach
7 a 9 de Abril de 2021, Online, SC, Brasil Amorim et al.

The last step is to execute the tests, and it may be done in two
different ways. The first uses a Java class with JUnit’s @Cucum-
berOptions annotation. In this method, the tester may create several
Runner classes with different predefined configurations, allowing
easier command line calls. In the second method, a Cucumber Java
build configuration called Runner is created to execute the scenarios
directly through the .feature files. Figure 3 presents an example of
a Runner class with @CucumberOptions annotation configuration.
Both methods need at least two parameters, the features, and the
glue. The features parameter indicates the folder with the .feature
files containing the scenarios to be executed. The glue parameter
indicates the package with the Java classes containing the methods
related to each scenario step.

Figure 3: Example of a Java class using@CucumberOptions

2.2 Parallel Testing
The testing activity is generally done sequentially, with test blocks’
execution one after another. Therefore, with the increased use of
multi-core processors, concurrent programs may be a solution to
improve performance and a way to explore the hardware resources
available on the computer. Parallel testing consists of the execution
of testing tasks (units or blocks) concurrently [8]. The objective is
to increase the throughput and efficiency of test execution. Rivoir
[9] showed the advantages of using parallel execution to solve the
high cost related to the execution of large sets of test cases.

Waivio [10] presents three types of parallelism in the automa-
tion of testing units. A testing unit is composed of several testing
functions. For example, a program with two features may have
a testing unit for each feature. Each unit may have several test
cases that cover different scenarios. Type I parallelism is defined as
testing multiple Units Under Test (UUT) in parallel. In this type of
parallelism, testing units are decomposed and mapped regarding
the number of resources available (processors or cores). In this
case, several units are executing in parallel, and each one executes
different test cases sequentially. Type II parallelism (or Vector Test
Program Set [11]) is defined as running multiple tests on a single
UUT in parallel. It may be useful when the coupling between test
scenarios is weak and prerequisites among them are nonexistent.
Finally, type III parallelism is the parallel execution of a single test
case’s test steps or actions. This type of execution requires a de-
sign to identify which part of the test may be executed in parallel
observing data dependency.

Bazylevych and Franko [12] review the efficiency of parallel
path analysis based on the Control Flow Graph (CFG) to generate
unit tests. In this approach, source codes in the C programming
language are parsed to Abstract Syntax Tree, and then a CFG is
created. After that, the graph is interpreted as a tree, and all paths
of this tree are recorded. The efficiency in the execution of this
approach depends on the number of processors and the amount of
time need to follow one path. The authors conducted an experiment
to analyze the time, speedup, and path parallelization execution
efficiency. As a result, they showed that the proposed approach’s
efficiency is near 80% when executed in four processors.

Some tools support the parallel execution of testing, as JMeter,
Selenium, and Pobot. JMeter 1 is a performance testing framework
created by Apache, and it has been widely employed as a perfor-
mance testing tool for Web applications. JMeter provides a parallel
controller that allows concurrent sampling by many threads, which
helps perform different testing scenarios. The parallel controller
works through a set of elements called Thread Group. These ele-
ments are used to define the number of threads, ramp-up period,
and the number of repetition of the test. Each thread is responsi-
ble for simulating a user and execute a test suite simultaneously
and independently of other threads. In some cases, automation is
challenging since it requires various parameters to specify, mainly
for complex applications that use dynamic content. Lastly, the load
testing using JMeter may use a high quantity of memory, leading
to overload and no guarantee of the testing.

Selenium is a set of three tools used to test web applications:
Selenium IDE, Selenium WebDriver, and Selenium Grid. The Sele-
nium supports test automation on web browsers such as Firefox,
Internet Explorer, Google Chrome, Safari, and Opera [13]. To run
Selenium WebDriver tests in parallel, it is necessary to set up the
Selenium Grid Server as a Hub. Each node in the hub will run the
test in a different web browser. To run tests in parallel, TestNG 2

unit testing framework is used to create tests that may be executed
in parallel. It uses a multithreading model to run tests in parallel.
This approach’s problem is the necessity to use the TestNG or an-
other testing framework and create a new configuration file in XML
(eXtensible Markup Language). The configuration is complex, and
it is time-consuming because if a test case is included or excluded,
it is necessary to adapt the configuration file.

Pabot 3 is a tool that allows the parallel execution of tests for
Robot Framework 4 - a test automation framework. Pabot allows
the tester to split one execution into multiple processes that run
concurrently and provides keywords that help communication and
data sharing between the executor processes. The problemwith this
tool is that it cannot be used in BDD using the Cucumber platform.

The tool presented in this paper aims to automatically distribute
test scenarios within new threads with no need to re-write test
cases or modify already automated test cases, gathering the test
instructions and invoking the test methods.

1https://jmeter.apache.org/
2http://testng.org
3https://pabot.org/
4https://robotframework.org/

318



XII Computer on the Beach
7 a 9 de Abril de 2021, Online, SC, Brasil Amorim et al.

3 MULTI-THREADED TESTING TOOL
The Multi-Threaded Testing (MTT) tool aims to reduce the compu-
tational cost required to execute a set of test scenarios (units) in the
context of Java programs using the Cucumber platform for Behav-
ior Driven-Development projects. MTT allows the tester to execute
a project’s test scenarios in parallel using multithread execution of
each test scenario.

3.1 MTT Configuration
In a Java project using the Cucumber platform, the testing process
using BDD follows the development flow defined in Section 2.1.
At the end of this process, the project commonly has a package
with all .feature files. Each file may contain scenarios that represent
user stories of the system. Scenarios are written using Gherkin
syntax that allow the tester to define how the system should be-
have through steps (Given, When, And and Then). Besides that, for
each feature, there is a package with .java files containing all test
methods that implement each step defined in each scenario. Those
methods may use other tools and plugins as JUnit, TestNG, and
Selenium to simulate a web browser’s execution and make assertion
between values. Finally, the Runner class contains the configuration
necessary to execute the Cucumber project and the test scenarios.

The MTT tool is composed of two classes called MTT and Core
(shown in Figure 4) that need to be imported into the project before
its use. MTT class manages the process of reading the files and
creating the threads. The Core class encapsulates all the methods
that implement the scenarios class (Figure 2). Therefore, Selenium
directives such as web drivers and all the browser actions are un-
necessary.

Figure 4: Class diagram of MTT tool

After that, it is necessary to change the Runner class and instan-
tiate the MTT class. The tool set up is composed of a call to the
run method with three parameters: (1) the path to the .feature file
directory, (2) the path of the .java class directory, which contains
the step methods implementation, and (3) the number of threads to
execute. This configuration is similar to the cucumber configuration
of runner (shown in Figure 5).

This version of the runner class does not use Cucumber tags as
@RunWith and @CucumberOptions. Instead, JUnit or TestNG tags

Figure 5: Runner class for MTT tool

such as @Test are used to create test methods. Those methods use
as parameter the same @CucumberOptions arguments as shown in
Figure 3, plus the number of threads represented by the variable
maxInstances.

An advantage of this new runner class is the possibility to orga-
nize different executions. For instance, in the Cucumber options,
a configuration is made per class. In MTT, however, as they are
called method via@Test tag, it is possible to have several classes
with different configurations. Besides that, it is possible to have
several classes with Cucumber options.

3.2 MTT Execution Flow
The MTT tool is composed of 3 steps: (1) Scenarios reading, (2) Test
reading, and (3) Parallel execution. Figure 6 presents an overview
of the MTT tool.

3.3 Step 1 - Scenarios Reading
The first step consists of the reading of all test scenarios defined in
the .feature files. As seen in Section 2.1, each feature file may con-
tain several test scenarios. Each scenario is written using Gherkin
syntax, and each keyword (@Given, @When, @Then, and @And)
represents a step to be executed in the scenario.

Further, each scenario may contain several test inputs (test data).
Therefore, the MTT tool reads all .feature files of the project and
save the scenarios and test inputs. As a result of this step, a list with
all scenarios is created to be used in Step 3.

3.4 Step 2 - Test Reading
The second step consists of the reading of all test methods imple-
mented. As seen in Section 2.1, the test scenarios are implemented
in a class with methods that execute each step defined in the .feature
files. In this step, all methods are read and saved in a list to be used
in Step 3.

3.5 Step 3 - Parallel Execution
The last step is the parallel execution of different test scenarios.
In the configuration runner class, the tester defines the number
of threads to be executed, and the MTT tool creates the threads
that will execute all the scenarios. For example, if the tester sets
the number of threads as 3, then three threads will execute the
test scenarios following the information collected in the .feature

319



XII Computer on the Beach
7 a 9 de Abril de 2021, Online, SC, Brasil Amorim et al.

Figure 6: Overview of the MTT

and .java classes and saved in a list as shown in steps 1 and 2. As
a scenario is composed of several steps, they will be executed se-
quentially. Furthermore, as a scenario may have several test inputs,
each test input will be executed sequentially. This execution model
represents type II of test parallelism described by Waivio [10].

The MTT tool implements a concurrent programming model
called thread pool. When a thread finishes the execution of one
scenario, it looks back at the list of scenarios to be executed and
selects the next scenario to be executed until there are no more
scenarios to be executed. Figure 7 presents the thread pool model.

4 PERFORMANCE EVALUATION
The execution of automated tests may lead to performance problems
once test scenarios must be executed sequentially. MTT tool brings

Figure 7: Thread pool model

a solution to this problem and allows the tester to parallelize test
scenarios’ execution, increasing the testing performance.

This section presents a study to evaluate the MTT tool’s perfor-
mance in three different hardware configurations. The objective is
to identify the speedup gained using different threads for the same
workload.

4.1 Evaluation Setup
In this performance evaluation, it is intended to evaluate the per-
formance of MTT tool in two different hardware setups:

• LaptopAsus PredatorHelios 300with an Intel Core i7-7700HQ
CPU @2.80GHz, 16GB of RAM, and a Seagate ST2000LM007
2TB 128MB Cache SATA 6.0Gb/s;

• Laptop Avell G1555 MUV with an Intel Core i5-9300H CPU
@2.4GHz, 16GB of RAM, and a ADATA SX8200PNP 512GB
HD 500MB/s;

Windows 10 was used for all hardware setups as an OS, and
the software used for the execution are IntelliJ Community IDE
version 2019.3.1, JDK version 1.8.0.231, Selenium version 3.141.59,
and TestNG version 6.14.3. The Selenium plugin is responsible for
the navigation on the web driver (browser), and the TestNG plugin
is responsible for executing the test suite.

The program used in this study is a web application for triangles
classification. Triangles are classified depending on the relative
sizes of their elements. As regards their sides, triangles may be
Scalene (all sides are different), Isosceles (two sides are equal), or
Equilateral (all three sides are equal). This project has a feature
that consists of the triangle classification considering the size of
their side. Therefore, three testing scenarios were created to verify
a possible triangles class. For each scenario, thirty test cases were
used with different input values.

4.2 Implementation and Measurement
This study considers two factors with some levels (or treatments).
The first level is the hardware setup and has two levels in CPU:
Intel Core i7-7700HQ, Intel Core i5-9300H. The second factor is
the number of threads with twelve treatments: 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 15, and 20. The design defined for this study is a Full Facto-
rial Design with Replication. A full factorial design utilizes every
possible combination at all levels of all factors. Table 1 presents
the design of the study divided into three categories described in

320



XII Computer on the Beach
7 a 9 de Abril de 2021, Online, SC, Brasil Amorim et al.

the first column. The second column presents the levels of factor 1
(CPU). The third column represents the second factor, and the last
column presents the third factor.

Study scenario CPU Thread number

1 Intel Core i7-7700HQ
1 to 10
15
20

2 Intel Core i5-9300H
1 to 10
15
20

Table 1: Design of the study.

This study uses the turnaround time that represents the time
between the start of the execution until its end. The execution time
was obtained in the IntelliJ IDE and collected for each repetition.
Ten repetitions were performed, and the average of the time was
calculated.

In the evaluation of a parallel system, the aim is to find howmuch
performance gain is obtained by the parallelization of an application
compared to the sequential version. The Relative speedup compares
the parallel version on one processor compared to a number 𝑝
of processors [14]. The relative speedup was calculated by the
ratio between the time on one thread and the time on using each
treatment of treads.

Efficiency measures the time a processor is used and is defined
by the ratio between the speedup and the number of processors.
The efficiency was calculated by the ratio between the speedup by
the number of threads, using the formula presented in Grama et al.
[14].

In an ideal parallel system, the speedup is equal to the number
of processors and the efficiency is equal to 1. However, in practice,
the speed increase is less than the number of processors and the
efficiency is between 0 and 1, depending on the effectiveness of the
processors [14]. Therefore, in our experiment even if the speedup
reached is high, if it uses several threads in parallel, the efficiency
will be low.

4.3 Results
The results of the experiment are presented in Table 2 in which the
first column presents the CPU; the second column shows the thread
number, the third column exhibits the time in minutes (average),
the fourth column displays the speedup, and the last column shows
the efficiency reached.

The Figure 8 shows the executions’ speedup. It is possible to
observe a sublinear speedup once the speedup obtained is less than
the number of threads used in the execution. The critical point
for this study is between eight and ten threads. After this point,
the speedup and efficiency decrease. This decrease is understand-
able once the increase in the number of threads increases the JDK
management considering resources and processing order. After ten
threads, the overhead generated by communication and synchro-
nization intrinsic to concurrent programs starts to overcome the
processing time’s gaining.

CPU Thread Minute Speedup Efficiency

Intel Core
i7-7700HQ

1 8,35 1,00 100%
2 4,72 1,77 88%
3 3,95 2,12 71%
4 3,11 2,69 67%
5 2,64 3,16 63%
6 2,52 3,32 55%
7 2,51 3,33 48%
8 2,42 3,45 43%
9 2,44 3,42 38%
10 2,43 3,43 34%
15 2,91 2,87 19%
20 4,66 1,79 9%

Intel Core
i5-9300H

1 8,58 1,00 100%
2 4,61 1,86 93%
3 3,38 2,54 85%
4 2,89 2,97 74%
5 2,60 3,30 66%
6 2,19 3,91 65%
7 2,05 4,18 60%
8 2,01 4,27 53%
9 1,96 4,38 49%
10 1,87 4,59 46%
15 2,11 4,06 27%
20 2,68 3,21 16%
Table 2: Design of the study.

In the Figure 8, it is possible to see that the speedup of CPU Intel
Core i5-9300H is higher than CPU Intel Core i7-7700HQ. These
CPUs are from different generations: the former is from the ninth
generation, and the letter is from the seventh generation. Even
with the same number of cores (four) and the same number of
threads (eight), i5-9300H has improvements such as Max Turbo
Frequency of 4.10 GHz and 8MB Intel Smart Cache. Other hardware
characteristics such as RAM may influence the speedup Even with
a higher speedup, the critical point of the study is ten threads for
both CPUs.

This study’s objective was to observe the speedup of the MTT
tool. Therefore, different thread numbers were used to execute one
testing workload of 120 test cases. As a result, we identified that
the higher speedup was 4,59 using ten threads in CPU Intel Core
i5-9300H with an efficiency of 46%. In CPU Intel Core i7-7700HQ,
the higher speedup was 3,45 with an efficiency of 43% using eight
threads.

4.4 Threats to Validity
Construct validity refers to the relation between theory and ob-
servation [15]. Threats to construct validity regard the extent to
which the setting reflects the construct under study. A threat in
this study is the thread number. It directly influences the execution
time and consequently in the speedup and efficiency. Twelve thread
numbers were used to mitigate this threat, ranging from 1 to 10,

321



XII Computer on the Beach
7 a 9 de Abril de 2021, Online, SC, Brasil Amorim et al.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10 15 20
Thread Number

S
pe

ed
up

CPU Intel Core i5−9300H Intel Core i7−7700HQ

Figure 8: Speedup of the results

15, and 20. Besides that, ten repetitions were performed for each
thread number.

External validity refers to the generalization of the results [15].
Threats to external validity concern our ability to generalize the
results outside the study setting. A threat in this study is the repre-
sentativeness of the program. A web application available online
was usedwith 120 different test cases tomitigate this threat. Two dif-
ferent hardware configurations were used to examine the speedup
and efficiency difference.

4.5 Discussions
The primary objective of the MTT tool is to support the parallel
execution of test scenarios in the context of BDD, as described
in Section 3. However, due to its possibility to create several test
instances, it can be used in performance testing. One functionality
may be tested until its limit to observe how much simultaneous
access this functionality can support.

TheMTT does not demand a structure to test cases and scenarios.
Therefore, it may be adapted to other contexts beyond BDD. The
instantiation of MTT to parallelize test scenarios in BDD came from
the authors’ real necessity to improve the test automation process
in a context with several test scenarios to be executed. As future
work, a framework structure will be available for testers that want
to instantiate MTT to apply it in different agile methodologies.

Besides the support for web application testing, MTT can be
used in mobile tests to parallelize scenarios within devices. The
tester must configure the devices to be used, and each one will be

executed in one thread. Therefore, the number of threads executing
in parallel will be the same as the number of devices. This new
functionality has some limitations once the tester cannot analyze
the simultaneous test’s correct impact without closing and opening
devices manually; therefore, more studies are necessary for this
type of testing.

MTT tool has a limitation regarding the ideal configuration con-
sidering the number of threads. It is known that only the increase
in the number of threads does not necessarily mean an increase in
the speedup and sometimes can become the program worse than
the sequential. Consequently, the tester must consider a previous
analysis of its hardware configuration and the test workload to be
executed and seek to define the best configuration.

Considering the types of parallelism defined in Waivio [10], the
MTT tool uses the thread pool model of execution that represents
type II of test parallelism. The MTT tool is similar to JMeter and
Pabot, once it is possible to set the number of threads to be executed.
However, the MTT has the advantages of allowing parallelization
in the context of BBD projects and has an easy configuration setup.

5 CONCLUSION
Commonly, creating and executing tests to ensure product quality
is considered a complex activity. The growing number of artifacts
(codes, features, class integration, among others) for testing directly
influences the number of test cases and, consequently, its time to
be executed. To address this problem, parallel execution of test
scenarios is promising.

322



XII Computer on the Beach
7 a 9 de Abril de 2021, Online, SC, Brasil Amorim et al.

MTT (Multi-Threaded Testing) is a tool to parallelize the execu-
tion of test scenarios in Java projects using BDD (Behavior-Driven
Development) and Cucumber. The tool aims to reduce the time re-
quired to execute testing scenarios by multi-thread test automation
execution.

A study was conducted to evaluate the performance of MTT
using two different hardware configurations and twelve thread
numbers. The results showed that MTT could reach a speedup of
4,59 using ten threads in CPU Intel Core i5-9300H with an efficiency
of 46%, and a speedup of 3,45 with an efficiency of 43% using eight
threads in CPU Intel Core i7-7700HQ. This scenario may hugely in-
crease the test response and impact during a software development
life-cycle.

Future work will involve a deeper understanding of resource
peak analysis. Besides that, new studies are necessary to understand
how to select the ideal number of threads for each context. Finally,
mobile testing functionality must be validated.

6 ACKNOWLEDGMENT
The authors would like to thank Adriane Kaori Oshiro and Lucas
Daolio for comments that greatly improved this work, and we thank
Marcelo Roland Bernardino, Denis Augusto L. de Castro and Tiago
Barbosa Wenceslau for their insights.

REFERENCES
[1] Capgemini. World quality report 2020-21. https://www.capgemini.com/research/

world-quality-report-wqr-20-21/, 2020. Acesso em: 04 de dezembro de 2020.
[2] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley &

Sons, 2004. ISBN 0471469122.
[3] Ida Bagus Kerthyayana Manuaba. Combination of test-driven development

and behavior-driven development for improving backend testing performance.
Procedia Computer Science, 157:79 – 86, 2019. ISSN 1877-0509. doi: https://doi.
org/10.1016/j.procs.2019.08.144.

[4] G. Rothermel, R. H. Untch, Chengyun Chu, and M. J. Harrold. Test case prioritiza-
tion: an empirical study. In Proceedings IEEE International Conference on Software
Maintenance - 1999 (ICSM’99). ’Software Maintenance for Business Change’ (Cat.
No.99CB36360), pages 179–188, 1999. doi: 10.1109/ICSM.1999.792604.

[5] E. Starkloff. Designing a parallel, distributed test system. In 2000 IEEE Autotestcon
Proceedings. IEEE Systems Readiness Technology Conference. Future Sustainment
for Military Aerospace (Cat. No.00CH37057), pages 564–567, 2000. doi: 10.1109/
AUTEST.2000.885641.

[6] L. Miclea A. Contan, C. Dehelean. Test automation pyramid from theory to
practice. In 2018 IEEE International Conference on Automation, Quality and Testing,
Robotics (AQTR), 2018.

[7] R. Lawrence and P. Rayner. Behavior-Driven Development with Cucumber: Better
Collaboration for Better Software. Pearson Education, 2019.

[8] J. Schimmel, K. Molitorisz, A. Jannesari, andW. F. Tichy. Automatic generation of
parallel unit tests. In 2013 8th International Workshop on Automation of Software
Test (AST), pages 40–46, 2013. doi: 10.1109/IWAST.2013.6595789.

[9] J. Rivoir. Parallel test reduces cost of test more effectively than just a cheap tester.
In IEEE/CPMT/SEMI 29th International Electronics Manufacturing Technology Sym-
posium (IEEE Cat. No.04CH37585), pages 263–272, 2004. doi: 10.1109/IEMT.2004.
1321674.

[10] Nathan Waivio. Parallel test description and analysis of parallel test system
speedup through amdahl’s law. In 2007 IEEE Autotestcon, pages 735–740. IEEE,
2007.

[11] C. McNatt and T. Gaudette. Vectorized test program sets using matlab and the
teradyne ai-710 analog test instrument. In 2006 IEEE Autotestcon, pages 432–437,
2006. doi: 10.1109/AUTEST.2006.283701.

[12] Roman Bazylevych and Andrii Franko. Parallelization of unit tests generation
by control flow graph analysis. In 2019 IEEE 14th International Conference on
Computer Sciences and Information Technologies (CSIT), volume 2, pages 161–164.
IEEE, 2019.

[13] U. Gundecha. Selenium Testing Tools Cookbook. Community experience distilled.
Packt Publishing, 2015. ISBN 9781784392512. URL https://books.google.com.br/
books?id=HXC7jgEACAAJ.

[14] Ananth Grama, George Karypis, Vipin Kumar (Autor), and Anshul Gupta. Intro-
duction to Parallel Computing. Addison-Wesley, 2nd edition, 2003.

[15] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn Regnell,
and Anders Wesslén. Experimentation in software engineering: an introduction.
Kluwer Academic Publishers, 2000.

323

https://www.capgemini.com/research/world-quality-report-wqr-20-21/
https://www.capgemini.com/research/world-quality-report-wqr-20-21/
https://books.google.com.br/books?id=HXC7jgEACAAJ
https://books.google.com.br/books?id=HXC7jgEACAAJ

	Abstract
	1 Introduction
	2 Background
	2.1 Testing in Behavior Driven-Development
	2.2 Parallel Testing

	3 Multi-Threaded Testing tool
	3.1 MTT Configuration
	3.2 MTT Execution Flow
	3.3 Step 1 - Scenarios Reading
	3.4 Step 2 - Test Reading
	3.5 Step 3 - Parallel Execution

	4 Performance Evaluation
	4.1 Evaluation Setup
	4.2 Implementation and Measurement
	4.3 Results
	4.4 Threats to Validity
	4.5 Discussions

	5 Conclusion
	6 Acknowledgment
	References

