
Investigating Fitness Functions for Search-based Requirements
Prioritization

Andrei W. Corezolla
Federal University of Technology - Paraná

Dois Vizinhos - PR, Brazil
andreiwelliton@gmail.com

Francisco Carlos M. Souza
Federal University of Technology - Paraná

Dois Vizinhos - PR, Brazil
franciscosouza@utfpr.edu.br

Lincoln M. Costa
Federal University of Rio de Janeiro

Rio de Janeiro - RJ, Brazil
costa@cos.ufrj.br

Alinne C. Correa Souza
Federal University of Technology - Paraná

Dois Vizinhos - PR, Brazil
alinnesouza@utfpr.edu.br

ABSTRACT
It can be challenging for people to select the most relevant re-
quirement among several software system development options.
Requirements prioritization defines the ordering for executing re-
quirements based on their priority or importance concerning stake-
holders’ viewpoints, which is a problematic task. Based on this
problem, this study aims to present a requirements prioritization
approach using a genetic algorithm to find optimal solutions, and
it can assist in the requirements prioritization activity during the
software development process. In this paper, we investigated a
set of criteria to create four functions GUT-D, ThS-D, ST, and LT,
to assess candidate solutions, i.e., the recommended prioritized
requirements. We examine the empirical results concerning the
practical approach’s effectiveness and cost computational two ex-
periments in the evaluation. We found that the 𝐺𝑈𝑇 − 𝐷 fitness
function achieved the best fitness value in different settings with
90.51% and 98.63%. Besides that, our study demonstrates that the ap-
proach is promising to assist requirements prioritization since each
fitness function can be used individually according to companies’
necessities.

KEYWORDS
requirements prioritization, search based software engineering,
genetic algorithm

1 INTRODUCTION
Quite recently, considerable attention had paid to demands in de-
livering software products. The competitiveness has encouraged
companies to search for solutions to be more agile and efficient
to meet customer expectations. Software development depends di-
rectly on process, well-defined requirements, and task estimations
to ensure the agility of delivers and quality software. Thus, the
requirements engineering area provides activities at the start of
the development life-cycle to achieve specific attributes such as the
cost, complexity, dependency, and importance of each requirement
for the project not to exceed the delivery limit or budget.

It is worth mentioning, these attributes above mentioned depend
mainly on the domain of software that will be developed. The im-
portance of each requirement is regarding specific stakeholders,
i.e., a requirement may afford customer satisfaction but with a high

cost for implementation. Therefore, selecting the set of require-
ments that will compose the development next phase or the new
release proves to be a challenge. The main problem is finding the re-
quirements that provide a trade-off between satisfaction customers,
budget, and product quality [1].

In requirements engineering, the requirements prioritization is
a sub-area that assists the selection requirements activity based on
the stakeholder’s interests. Requirements prioritization is a process
that is managing the importance and urgency of software require-
ments that will be implemented under constraints of cost, quality,
resources, time, and stakeholders’ satisfaction [2].

Although the requirements prioritization is already a consoli-
dated process in the software industry and literature, it is considered
a complex multi-criteria decision-making process. The complexity
occurs mainly for involving different personas such as customer,
product owner, project sponsor, developers, and users associated
with the difficulty of requirements, team size, and time development.
Thus, the problem consists of identifying a set of requirements that
maximizes the stakeholder’s satisfaction or fulfills specific criteria.
Usually, this process is performed manually, but it is subjective
once error-prone and labor-expensive. It demonstrates that partial
or complete automation has enormous importance to overcome
these issues and provide agility in this activity. Nevertheless priori-
tizing requirements is an activity that cannot be generalized to all
companies, an adaptive automatic approach, i.e., that can be able
to reuse for different aims is a strategy to agile this task.

Different companies have particular ways of prioritizing their re-
quirements, whether from business value, customer importance, or
the significance of the requirement. From this perspective, this study
aims to present an approach called Search-Based Requirements
Prioritization (SRP) for requirements prioritization combining as-
pects as stakeholders interests and requirements attributes such as
importance, dependence, and time for development via a search-
based algorithm. We performed our approach’s evaluation with
two independent experiments to verify the effectiveness and com-
putational cost of the SRP approach using the proposed algorithm.
Besides, in these experiments, we utilized a software development
company’s requirements data to analyze the approach adequacy in
a real environment.

The remainder of this paper is organized as follows: Section 2 pro-
vides the necessary theoretical foundation for the study. Section 3

Formato de Referência: Souza, et al. Investigating fitness functions for search based requirements prioritization. In COMPUTER ON THE BEACH (COTB’21), 12., 2021, Balneário
Camboriú. Anais... Balneário Camboriú: Universidade do Vale do Itajaí, 2021, p. 1-8.



XII Computer on the Beach
7 a 9 de Abril de 2021, Online, SC, Brasil Souza et al.

reports the proposed approach and some related work. Section 4 re-
ports research design of experiments conducted. Section 5 analyzes
the results obtained and discusses the proposed approach. Finally,
Section 7 makes the concluding remarks and future directions are
discussed.

2 BACKGROUND
This section presents the main concepts about Requirement Priori-
tization, search-based requirement prioritization, and GA.

2.1 Requirement Prioritization
Software requirements commonly undergo several changes in their
cycle. Thus, treating and prioritizing them correctly becomes a
complex task since it requires a lot of determination and patience,
without mentioning the work of dealing with the stakeholders’
different interests.

Requirements prioritization is seen as one of the most significant
tasks for decision-makers (leaders or managers) within a project
[3]. On the other hand, Hudaib et al. [4] treats it as the primary
process in software engineering, providing the perfect order of
implementation of the requirements to plan software versions and
provide desirable functionality to customers.

This prioritization task often occurs given stakeholders’ timing
or interest, such as a customer who represents more excellent busi-
ness value for the company, so satisfying its requests has higher
priority. However, such requirements can mean something signifi-
cant only for that customer, and their value-added to the system
becomes lower. The literature on requirements prioritization shows
various approaches trying to achieve satisfactory results. The GUT
matrix and Theme Screening stand out for their simplicity and good
performance among several existing prioritization techniques.

2.1.1 GUT Matrix
. The GUT matrix address this complexity and classifies each prob-
lem according to Gravity (G), Urgency (U), and Trend (T), generating
the acronym (GUT) as detailed below:

• Gravity: It is analyzed considering the intensity or impact
that the problem can cause if it is not solved. These damages
can be assessed quantitatively or qualitatively.

• Urgency (U): It considers the time frame to solve a given
problem. It can be considered urgent problems, deadlines
defined by law, or customer response time.

• Tendency (T): It is analyzed by the pattern or trend of the
situation evolves. Problems are analyzed considering the
development that it will have in the absence of effective
action to solve them.

2.1.2 Theme screening
. The Theme Screening technique consists of ordering the func-
tionalities based on business themes used as comparison factors, as
illustrated in Fig. 1 [5].

In the Theme screening technique, it is necessary to define the
comparison criteria and ensure that all are valid in each requirement.
A minimum of five and a maximum of nine criteria shall be defined,
where one of them shall be classified as the primary theme and
serve as a reference for the others’ score. The base theme receives

C
om

p
le

xi
ty

E
ff

o
rt

R
O

I

In
te

gr
at

io
n

B
ud

ge
t

Total Priority
Differentiated access for subscribers - - + + + +1 2
Make product videos available - + + - - -1 4
Pay by credit card 0 0 0 0 0 0 3
Social media integration + + + - + +2 1
Provide free access - - + - + -1 4

Criteria

Figure 1: Theme Screening (Adapted from [5])

a zero score, while the most important ones receive a positive sign
and the less important ones a negative sign.

The value of each prioritized item is obtained by summing the
negative and positive signals; at the end, when ordering from the
largest to the smallest, we will have the prioritization result.

However, with the projects’ intense demands and the complexity
of them, traditional techniques of prioritization of requirements
lost their effectiveness, bringing a significant problem concerning
the prioritization of requirements. In this context, search-based
techniques have become a favorable means for prioritizing require-
ments.

2.2 Search-based Requirement Prioritization
Search-based Software Engineering (SBSE) automates a SE activi-
ties utilizing different techniques, such as local and global searches,
metaheuristics, and evolutionary algorithms. These techniques offer
suitable solutions for complex problems at a reasonable computa-
tional cost compared to random techniques. SBSE approaches have
been gainingmuch importance in recent years. It has supported soft-
ware engineers across a range of software development activities
as requirements, code generation, software testing, maintenance,
and, requirements prioritization which is the focus of the present
paper.

Formally, SBRP may be represented by a set of n requirements to
be prioritized, i.e., 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑛}. Generally, the requirements
come with some attributes that should be considered: i) dependence
between them; ii) importance regarding a stakeholder; and iii) com-
plexity. Then, the aim is to find a set of m prioritized requirements,
for example, 𝑅𝑃 = {𝑟𝑝2, 𝑟𝑝4, 𝑟𝑝7 ..., 𝑟𝑝𝑚} that will be implemented
in the next phase of development, or they will enter in a new release
of the system [6].

Nevertheless, to address the requirements prioritizing problem
in real environments, various aspects should be analyzed because
prioritization strategies can variate according to each company.
For this reason, an automated approach for RP should cover many
interests, be it from the customer, company, or developer. Therefore,
it is necessary to adapt and extend traditional techniques to address
the real strategies for prioritizing based on interests.

The most common approaches found in the literature are regard-
ing the application of search-based algorithms to the next release
problem that uses mainly the satisfaction of customers as criteria
[7], [8], [9]. However, nowadays, it does not reflect the compa-
nies’ reality because they also consider the importance and time to
develop each requirement.

452



XII Computer on the Beach
7 a 9 de Abril de 2021, Online, SC, Brasil Souza et al.

Somany efforts have been invested in requirements prioritization
research. It is possible to find different algorithms as hill climbing,
ant colony optimization, and genetic algorithm, one of the most
popular. Due to its robustness and flexibility also was a target of
our study.

2.3 Genetic Algorithm
Genetic Algorithm (GA) is a search-based technique belonging to
evolutionary algorithms classes inspired by Darwinian evolution.
GA has been widely recognized as the main search strategy and an
optimization method that is often useful for dealing with combina-
torial problems and a considerable possibility of solutions [10].

The algorithm works on a set of candidate solutions called pop-
ulation. Each solution (also named individual) is qualified for a
specific fitness function. An individual is composed of a chromo-
some of genes, and each gene represents a piece of information to
solute the faced problem.

For the algorithm to find better solutions, genetic operators
are known as selection, crossover, and mutation are applied in
the population. Selection is the process of selecting parents who
recombine themselves to create offsprings for the next generation.
Themost commonly used selectionmethods include RouletteWheel
Selection, Rank Selection, and Tournament Selection.

The crossover operator is responsible for reproducing to produce
a new population that is fitter than the previous one. Firstly, the
parents are selected, and the crossover arises from a modification
in each individual. A vector of n-length can represent an individual,
and it determines the order in which genes are drawn from parents.
After a gene is drawn from one parent and removed from the other,
it is added to the offspring chromosome. Lastly, the mutation oper-
ator is employed to create small changes in individuals to maintain
the diversity of the population [11].

The GA flexibility makes them attractive for many optimization
problems in practice. In this context, several studies have demon-
strated the GA success in different domains such as music [12],
games [13] [14], autonomous driving [15], among others. To achieve
this success, the definition of an objective function to quantify a can-
didate solution is fundamental to guarantee the algorithm finding
promising solutions.

TThus, the main component of search-based approaches is the
fitness function (also called objective function), which guides the
algorithm process towards the search space’s promising areas. Thus,
more effective functions lead to significantly better results [16] [17].
The fitness function must be defined according to problem features,
i.e., the objective is represented by a particular feature capable
of evaluating candidate solutions in terms of their goodness and
suitability for solving the problem [18].

3 SRP APPROACH
The proposed approach attempts to automate the requirement’s
prioritization by searching a set of requirements that achieve spe-
cific criteria. These criteria are based on traditional prioritization
techniques as GUT Matrix and Theme screening. In addition to
these techniques, we propose two metrics: customer satisfaction,

the dependency between requirements, the importance of stake-
holder and requirement, time to develop a requirement, and total
hours worked by the developers.

It is worth mentioning that these elements have been defined
through a survey with seven project managers and eight require-
ments analysts of 5 different organizations. One of the main find-
ings was that 66.7% of the participants considered the level of de-
pendencies on requirements and 53.3% the delivery deadlines as
fundamental aspects in requirements prioritizing.

Requirement prioritization has been widely investigated as a
search problem since it needs to find a set of requirements according
to the different elements of a project. Thus, the present study utilizes
a Genetic Algorithm combined with four different fitness functions
to find the optimal set of prioritized requirements.

As we can see in Figure 2, the process starts from a complete list
of input requirements. The GA selects random values for an initial
set of prioritized requirements representing the candidate solutions.
Then, the GA assesses and improves the solutions iteratively us-
ing our fitness functions and the genetic operators. This process
is performed to improve fitness value and achieve higher search
space coverage until it reaches the total number of generations.
Finally, the approach’s output is a list containing the prioritized
requirements according to a fitness function strategy.

List of Requirements Genetic Algorithm

Fitiness Functions
fn - GUT-D

- ThS-D
- ST
- LT

1
2
3
4

Prioritized Requirements

1 - Input 2 - Processing 3 - Output

Figure 2: Approach for Requirements Prioritization

Our approach uses the following metrics to represent the pro-
posed fitness functions: (i) AdaptedGUTMatrix (GUT-D), (ii) Adapted
Theme Screening (ThS-D), (iii) Customers Satisfaction (ST), and the
(iv) Time for development (LT). These metrics are used to measure
the set of requirements’ adequacy and direct the search process to
an optimum in the search space. The fitness functions work sep-
arately into the approach, and they may be used according to the
necessity of each company or project.

3.1 Fitness Function 𝐺𝑈𝑇 − 𝐷 (F1)
𝐺𝑈𝑇 − 𝐷 is a function derived from the GUT Matrix, which is a
traditional prioritization technique. The GUT-D fitness function
consists of three criteria (𝐺 ,𝑈 , and 𝑇 ), also, the 𝐷𝑒𝑝 criterion that
indicates the number of dependencies for a requirement, i.e., how
many other requirements it depends on being developed.

For this fitness function, a set of 𝑛 requirements is assumed,
where 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑛}. As shown in the equation 1. The 𝐺𝑈𝑇 −
𝐷 function consists of the 𝐺 , 𝑈 , and 𝑇 multiplication. The value
obtained is penalized with the value of the dependencies of the set

453



XII Computer on the Beach
7 a 9 de Abril de 2021, Online, SC, Brasil Souza et al.

of requirements (𝐷𝑒𝑝). The penalty was defined because the more
dependence a requirement has, the longer it will be developed.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝑛∑
𝑖=1

(𝐺𝑖 .𝑈𝑖 .𝑇𝑖 ) − 𝐷𝑒𝑝 (1)

Lastly,𝐺𝑈𝑇 − 𝐷 aims to find the set of requirements that maxi-
mize the GUT criteria with the least dependencies on requirements.
The greater the number of dependencies a requirement has, the
worse the group of prioritized requirements.

3.2 Fitness function 𝑇ℎ𝑆 − 𝐷 (F2)
The proposed 𝑇ℎ𝑆 − 𝐷 function uses the principles of the theme
screening technique to perform the fitness value calculation as
presented in Subsection 2.1.2 and the dependency element.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝑛∑
𝑖=1

(𝑃𝑟𝑖 ) − 𝐷𝑒𝑝 (2)

The set of 𝑛 requirements is assessed by how the value of its
priorities is added (𝑃𝑟 ). The value is subtracted by the number of
dependencies (𝐷𝑒𝑝) of each 𝑟𝑖 , thus obtaining the fitness value.
Therefore, the 𝑇ℎ𝑆 − 𝐷 aims to maximize the priority value ob-
tained through the theme screening variables to find the best set of
requirements to be prioritized.

3.3 Fitness function 𝑆𝑇 (F3)
The 𝑆𝑇 function aims to maximize customers satisfaction by select-
ing 𝑛 requirements with a lower level of satisfaction, and a longer
waiting time in the development queue, i.e., the requirement is
essential for the customer, but, due to some technical cause, it may
have been judged to be of little relevance, and thus, able to gener-
ate dissatisfaction to him. The 𝑇𝑆 works as computing inversely
proportional. The function will evaluate the requirements that are
waiting for longer (𝑇 ), the highest priority (𝑃𝑟 ) according to stake-
holders, (𝐶) that works with a weight for a customer or stakeholder,
and the requirements that generated more dissatisfaction (𝑆𝑡 ).

This computing is obtained by the sum of the values 𝑇 and 𝑃𝑟 .
After the result is increased by the value of 𝐶 of the customer.
The result is obtained and later divided by 𝑆𝑡 . The criteria sum is
subtracted by the number of dependencies (𝐷𝑒𝑝) from each 𝑟𝑖 , thus
resulting in the fitness value as we can see in Equation 3:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝑛∑
𝑖=1

(𝑇𝑖 + 𝑃𝑟𝑖 )𝐶
𝑆𝑡

− 𝐷𝑒𝑝 (3)

3.4 Fitness Function 𝐿𝑇 (F4)
For 𝐿𝑇 function are selected n requirements with the lower time of
development (𝑇 ), the customer or stakeholders importance (𝐶), the
priority of requirements defined by stakeholders (𝑃𝑟 ).

The value obtained goes through a constraint assessment. If the
value of 𝑇 of the prioritized requirements is higher than the value
of total hours worked by the development team 𝐻 , the solution
is penalized since the requirements are only a few suitable for
prioritization. In the Genetic Algorithm, a penalty makes it hard
for an individual to move on to the next generation.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝑛∑
𝑖=1

𝑃𝑟𝑖 +𝐶
𝑇𝑖

(4)

In Equation 4, computing the inversely proportional function,
the goal is to maximize the fitness value in order to find the best set
of prioritized requirements. The lower the value of 𝑇 , the higher
the fitness value.

4 EXPERIMENTAL STUDY
We conducted an experiment to analyze and evaluate the effec-
tiveness of the proposed approach for supporting requirements
prioritization using GA. We are interested in measuring the effec-
tiveness in terms of the fitness value and computational cost in
time. In this study, the guidelines recommended by Wohlin et al.
[19] were used. The experiments were performed through a laptop
with Intel Core i7 2.4GHz CPU, 8GB memory in the Linux Ubuntu
operating system.

4.1 Experiment Definition
We used the Goal-Question-Metric (GQM) model [20] to set out the
objectives of the experiment that can be summarized as follows:

"Analyze SRP approach for the purpose of evaluation with respect
to fitness function and computational cost from the point of
view of experimenters in the context of the an organization."

For achieving the goal, we seek to investigate the following
Research Questions (RQs):

𝑅𝑄1: How effective is the SRP approach for requirements
prioritization?

In order to answer 𝑅𝑄1, we compare the fitness value of the
each fitness function (F1, F2, F3, F4). We also performed this experi-
ment 10 times and computed the average (`𝐹𝑖 ) of fitness value for
each function. We have defined the following hypotheses for this
research question:

𝐻10: There is no difference on fitness value between the GUT-D
(`𝐹1), ThS-D (`𝐹2), ST (`𝐹3) and LT (`𝐹4), thus:

𝐻10 : `𝐹1 = `𝐹2 = `𝐹3 = `𝐹4

𝐻11: There is difference on fitness value between the GUT-D
(`𝐹1), ThS-D (`𝐹2), ST (`𝐹3) and LT (`𝐹4), thus:

𝐻11 : `𝐹1 ≠`𝐹2 ≠`𝐹3 ≠`𝐹4
𝑅𝑄2: How efficient is the SRP approach for requirements

prioritization?
The efficiency of the SRP approach was measured using the time

for requirements prioritization. We also performed this experiment
10 times and computed the time average (`𝑇𝐹𝑖 ). The time was
computed in seconds for each fitness function considering three
different configurations. The time (T) was computed in seconds
and by expression 5.

𝑇 = 𝑇𝑓 −𝑇𝑠 (5)

We defined the following hypotheses for this research question:
𝐻20: There is no difference on time between the GUT-D (`𝑇𝐹1),

ThS-D (`𝑇𝐹2), ST (`𝑇𝐹3) and LT (`𝑇𝐹4), thus:
𝐻20 : `𝑇𝐹1 = `𝑇𝐹2 = `𝑇𝐹3 = `𝑇𝐹4

454



XII Computer on the Beach
7 a 9 de Abril de 2021, Online, SC, Brasil Souza et al.

𝐻21: There is difference on time between the GUT-D (`𝑇𝐹1),
ThS-D (`𝑇𝐹2), ST (`𝑇𝐹3) and LT (`𝑇𝐹4), thus:

𝐻21 : `𝑇𝐹1 ≠`𝑇𝐹2 ≠`𝑇𝐹3 ≠`𝑇𝐹4

4.2 Experiment Design
In this study, 254 maintenance and software evolution requirements
(R = {𝑟1, 𝑟2, 𝑟3, .., 𝑟𝑛}) from two real bases provided by a software
organization were used. The first base contains 41 requirements
and the second have 213 requirements. The Table 1 presents the
requirements recorded in the database.

Table 1: Requirements recorded in the database.

Req. Task Time Priority Premium Dep. Sat.
1 81146 14:50:26 3 1 0 4.5
2 82187 00:11:30 3 0 0 4.5
3 82187 00:23:05 3 0 1 4.5

The Req. column represents the ID of the requirement. The Task
column represents the task to which the requirements belong. The
Time column displays the estimated time for the requirement to
be met. The priority column represents the requirement’s priority
level, ranging from 1 to 5, where 1 represents low priority and
five high priority. The premium column shows the customer’s im-
portance or stakeholder, which has two values, 0 and 1, where 0
indicates that the customer is not very important for the require-
ments and one indicates that it is Premium (earned value). The Dep.
column indicates the number of dependencies on other require-
ments that prevent this requirement from being met. Finally, the
Sat. column shows the level of customer satisfaction concerning the
company’s services, which ranges from 1 to 5, where 1 represents
low satisfaction and five high satisfaction.

We carried out two different experiments (𝐸 = 𝑒1; 𝑒2). The first
experiment (𝑒1) answered 𝑅𝑄1 and the second (𝑒2) was conducted
to answer 𝑅𝑄2. For answering the RQs, this empirical study manipu-
lated an independent variable: fitness function; and four dependent
variables were measured:

• Number of population (𝑃 ): represents the number of can-
didate solutions. The population is composed by 𝑝 individual,
where 𝑝 is represented by three different parameters (𝑃 = 10,
20);

• Mutation Rate (𝑀𝑅): contains two different parameters
(𝑀𝑅 = 0.3, 0.5);

• Number of generations (𝐺): represents the number of gen-
erations in a GA. We used two different parameters for gen-
eration (𝐺 = 100, 200).

• Crossing Rate (𝐶𝑅): contains two different parameters (𝐶𝑅
= 0.3, 0.5);

For both experiments, we used two settings (𝑆𝑇 = 𝑠𝑡1, 𝑠𝑡2) for
each fitness function, which are a combination of the parameters
population, mutation rate, generations, and crossing rate respec-
tively. Table 2 present the design overview of these experiments.

4.3 Procedure of Experiment
To answer the RQs, we carried out the experiments as follows: (i)
requirements set generation; (ii) measure fitness value and time;

Table 2: Experiments Design

Fitness function Settings Parameters
P MR G CR

𝐹1, 𝐹2, 𝐹3, 𝐹4
𝑠𝑡1 10 0.3 100 0.3
𝑠𝑡2 20 0.5 200 0.5

and (iii) comparison of the fitness value and time obtained in each
fitness function. These experiments were performed in five steps:

(1) Identifying 254 maintenance and software evolution require-
ments (R = {𝑟1, 𝑟2, 𝑟3, .., 𝑟𝑛 }) as experimental subjects.

(2) Prioritizing a set of requirements (𝑅𝑃 ), where 𝑅𝑃 ⊆ 𝑅 is
generated through AG. 𝑅𝑃𝑛 represents the best requirements
to be prioritized. For the experiments, 𝑛 = 5 was defined
for a better analysis of the prioritized requirements and the
database’s size.

(3) Computing the fitness value for each 𝑅𝑃 obtained from the
four fitness functions;

(4) Comparison between the four fitness on requirements prior-
itization;

(5) Computing the time in seconds for each fitness function.

5 RESULTS AND DISCUSSION
In this section we answer the RQs presented in Section 4.1 from
the analysis of results concerning the effectiveness and efficiency
of the proposed approach. The results of the experiment are shown
following in separate subsections according to each research ques-
tion

5.1 Effectiveness of the SRP approach (𝑅𝑄1)
In this research question, the fitness value was computed according
to each fitness function (𝐹1, 𝐹2, 𝐹3, 𝐹4) and setting (𝑠𝑡1, 𝑠𝑡2).

Figure 3: Fitness value achieved by the fitness functions ac-
cording to each setting.

Figure 3 shows the fitness value on average obtained by the
fitness functions according to each setting. The results indicate that
the 𝐺𝑈𝑇 − 𝐷 , on average, achieved the best fitness value in both
settings with 90.51% in 𝑠𝑡1 and 98.63% in 𝑠𝑡2.

455



XII Computer on the Beach
7 a 9 de Abril de 2021, Online, SC, Brasil Souza et al.

The fitness functions 𝑇ℎ𝑆 − 𝐷 and 𝑆𝑇 achieved similar fitness
values. 𝑇ℎ𝑆 − 𝐷 achieved 89.56% and 95.40% in 𝑠𝑡1 and 𝑠𝑡2, respec-
tively; while 𝑆𝑇 achieved 88.81% in 𝑠𝑡1 e 97.99% in 𝑠𝑡2. The last
fitness function, (𝐿𝑇 ), obtained the lowest fitness value in both set-
tings with 79.14% and 90.47% in 𝑠𝑡1 and 𝑠𝑡2, respectively. Therefore,
the fitness value average obtained in 𝑠𝑡2 was 8.49% better than in
𝑠𝑡1.

Figures 4, 5, 6 and 7 show the fitness value on average obtained
by each fitness function in 𝑠𝑡2. The results suggest that the fitness
value improved over the 200 generations for 𝑠𝑡2. .

Figure 4 presents the best solution found in 200 generations. The
result shows that the greatest value, i.e., 100% was achieved in the
30th generation. Figure 5 presents the best solution found in the
108th generation of 200 generations.

Figure 4: Evolution of GUT-D fitness value in st2 .

Figure 5: Evolution of ThS-D fitness value in st2 .

From the results presented in Figures 4 and 5, we conducted
a comparative analysis of the prioritized requirements using the
adapted and traditional techniques, as shown in Tables 3 and 4.

We verified that the functions 𝐺𝑈𝑇 − 𝐷 and 𝑇𝑆 − 𝐷 presented
different results compared to the results of the traditional GUT
and TS. This result obtained expected due to the application of the
"dependency" criterion on requirements by 𝐺𝑈𝑇 − 𝐷 and 𝑇𝑆 − 𝐷

that aim to select the requirements based on GA and traditional
techniques that generate only by ranking.

Table 3: Requirements prioritization comparison between
𝐺𝑈𝑇 − 𝐷 and Matriz GUT.

Techniques Requirements Dep G U T Total

𝐺𝑈𝑇 − 𝐷

6 0 5 5 3 75
0 0 5 2 5 50
15 0 3 4 2 28
1 0 3 3 4 16
20 0 4 4 1 16

GUT Matriz

30 1 5 5 4 100
6 0 5 5 3 75
5 2 5 5 3 75
0 0 5 2 5 50
1 0 3 3 4 24

Table 4: Requirements prioritization comparison between
ThS-D and TS.

Techniques Requirements Priority Dependency

𝑇ℎ𝑆 − 𝐷

29 5 0
7 5 0
21 5 0
6 5 0
37 5 0

TS

30 5 1
6 5 0
5 5 2
0 5 0
16 5 0

For 𝑆𝑇 and 𝐿𝑇 functions, the assessment of the sets of require-
ments occurred separately since these functions were defined based
on the features (priority, dependency, the customer or stakehold-
ers importance, and customer satisfaction) of real projects in agile
environments.

Figure 6 illustrates the best solution achieved in the 69th genera-
tion of 200 generations. The 𝑆𝑇 function aimed to find the best set of
requirements considering the waiting time of the requirements and
customer dissatisfaction. Therefore, the 𝑆𝑇 focused on prioritizing
the development requirements for the longest time and those with
the least satisfied customers.

In contrast, 𝐿𝑇 function aimed to identify the best set of require-
ments taking into account the shortest time. This goal is defined
to find requirements with the shortest development time, thus fo-
cusing on the agility in delivering the requirements. Finally, Figure
7 presents the best solution achieved by 𝐿𝑇 function in the 137th
generation.

Analyzing the results, we observe that the best fitness value
achieved in the𝐺𝑈𝑇 −𝐷 function was in the 30th generation using
the 𝑠𝑡2. The 𝑇ℎ𝑆 − 𝐷 and 𝑆𝑇 functions obtained the best fitness
value in the 51st and 53rd generations, both using 𝑠𝑡1. Finally, the

456



XII Computer on the Beach
7 a 9 de Abril de 2021, Online, SC, Brasil Souza et al.

Figure 6: Evolution of ST fitness value in st2 .

Figure 7: Evolution of LT fitness value in st2 .

𝐿𝑇 function was the one that obtained the most discrepant result,
reaching its best fitness value in the 75th generation using 𝑠𝑡1.

The results analyzed through the Wilcoxon test indicated that
there was a significant difference between𝐺𝑈𝑇−𝐷 ,𝑇ℎ𝑆−𝐷 , 𝑆𝑇 and
𝐿𝑇 , which confirmed the alternative hypothesis (𝐻11), as shown in
Table 5.

Table 5:Wilcoxon test for fitness value comparison between
fitness function.

Functions 𝐹1 - 𝐹2 𝐹1 - 𝐹3 𝐹1 - 𝐹4 𝐹2 - 𝐹3 𝐹3 - 𝐹4 𝐹4 - 𝐹2
Z -9,218 -10,185 -6,926 -10,175 -10,165 -9,056

p-value 0.000 0.000 0.000 0.000 0.000 0.000

5.2 Efficiency of the proposed approach (𝑅𝑄2)
The second experiment computed the time average of the proposed
approach to answering this RQ. Figure 8 reports the results from
average time in seconds according to settings for each fitness func-
tion.

The results indicate that 𝐹4, on average, obtained the shortest
time, 3.06 seconds in 𝑠𝑡1 and 𝐹2 with 9.72 seconds in 𝑠𝑡2. On the other
hand, 𝐹2 was the most time-consuming, with 4.87 seconds in 𝑠𝑡1
and 𝐹3 with 14.90 seconds in 𝑠𝑡2. Considering all fitness functions,

Figure 8: Time achieved by the fitness functions according
to each setting.

the average time obtained in 𝑠𝑡1 was 3.82, while in 𝑠𝑡2 was 12.65
seconds.

As in RQ1, we analyze the results using the Wilcoxon test, as
shown in Table 5.2. The results indicate a significant time differ-
ence between 𝐹1 - 𝐹2, 𝐹1 - 𝐹3, 𝐹2 - 𝐹3, 𝐹3 - 𝐹4 and 𝐹4 - 𝐹2, which
confirmed the alternative hypothesis (𝐻21). However, the result of
the comparison between 𝐹1 - 𝐹4 indicated that there is no difference
in time between them, since 𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05 confirming the null
hypothesis (𝐻20).

Table 6:Wilconxon test for time comparison betweenfitness
functions

.
Functions 𝐹1 - 𝐹2 𝐹1 - 𝐹3 𝐹1 - 𝐹4 𝐹2 - 𝐹3 𝐹3 - 𝐹4 𝐹4 - 𝐹2

Z -2,803 -2,397 -1,886 -2,803 -2,803 -2,803
p-value 0,005 0,017 0,059 0,005 0,005 0,005

6 RELATEDWORK
Over the last few years, few publications have appeared in recent
years documenting different requirements prioritization techniques.
Some of these studies address the use of different techniques such
as Artificial bee colony (ABC) [21], Evolutionary Algorithms [22],
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [23].

Chaves-González et al. [21] propose a multi-objective swarm
intelligence approach called MOBAC, based on an artificial bee
colony algorithm, in which several multi-objective features have
been included to obtain high-quality results for a realistic Multi-
Objective Next Release Problem (MONRP). The MOABC was evalu-
ated through several quality indicators by comparing the results
with other approaches published in the literature, such as ACO,
NSGA-II, GRASP). The results generated by the approach obtain
a hypervolume (HV) of over 60% for the most complex data set
managed, while the other approaches published cannot obtain an
HV of more than 40% for the same data set.

Kifetew et al. [22] presented a multi-objective formulation of
the multi-decision-maker requirements prioritization problem and
outlined a solution based on EA. The proposed approach is based
on finding Pareto optimal prioritization that exhibits the minimum

457



XII Computer on the Beach
7 a 9 de Abril de 2021, Online, SC, Brasil Souza et al.

levels of disagreement among the various decision-makers involved
in the process, thus supporting the decision-maker through a view
on alternative optimal requirements prioritization. The ultimate
decision-maker selects optimal solutions based on additional inter-
ests (e.g., strategic).

The study proposed by Amaral and Elias [23] presented a multi-
objective, risk-based approach for the Next Release Problem (NRP),
called SR2 (Selection of Requirements based on Software Risks), in
which a risk analysis is incorporated for estimating the impact of
risks on requirements costs and stakeholders’ satisfaction. Based
on risk probability and severity, together with the cost of applying
mitigation techniques, SR2 estimates the impact of risks on both
requirements costs and stakeholders’ satisfaction. Experiments with
two semi-real datasets have been presented, in which the proposed
approach, exploring the NSGA-II algorithm, has obtained a higher
number of recommended solutions closer to Pareto and reference
fronts.

Although many points were addressed, our study presents an
automated approach for requirements prioritization combining
aspects as interests of stakeholders and attributes of requirements
such as importance, dependence, and time using GA, guided by an
objective function.

7 CONCLUSION
We proposed an automated approach for requirements prioritiza-
tion. Our approach consists of a Genetic Algorithm guided by differ-
ent fitness functions to prioritize requirements based on traditional
prioritization techniques such as GUTMatrix and Theme screening.
Besides these techniques, we create two metrics by combining some
elements: customer satisfaction, the dependency between require-
ments, the importance of stakeholder and requirement, time to
develop a requirement, and total hours worked by the developers.

Our approach works from 254 maintenance and software evo-
lution requirements from two real bases provided by a software
organization. We evaluated our approach through experiments to
analyze their effectiveness and efficiency for each fitness function,
i.e.,𝐺𝑈𝑇 −𝐷 , 𝑇ℎ𝑆 −𝐷 , 𝑆𝑇 , and 𝐿𝑇 . We carry out two experiments
and computed the fitness value achieved and the execution time.

Summing up the results, we noticed that for all experiments,
the 𝐺𝑈𝑇 − 𝐷 achieved the best fitness value in both settings with
90.51% in 𝑠𝑡1 and 98.63% in 𝑠𝑡2. However, for the company’s context
in the experiments, the fitness function that best suited was 𝐿𝑇 ,
which employed the importance of the stakeholders, time for the
development of that requirement, and level of priority given by
stakeholders.

This study demonstrates the feasibility of an intelligent approach
for requirements prioritization, in which each fitness function can
be used individually according to companies. Therefore, the present
work may lead to more robust approaches development to assist in
the requirements prioritization process.

Future works are direct towards the following topics: (i) a multi-
objective approach development to more accurately meet the needs
of companies; (ii) extends the approach through creating a graphical
application that facilitates their manipulation; (iii) improvement
of the fitness functions; and (iv) experiments using different real
scenarios.

REFERENCES
[1] Klaus Pohl. Requirements Engineering: Fundamentals, Principles, and Techniques.

Springer Publishing Company, Incorporated, 1st edition, 2010. ISBN 3642125778,
9783642125775.

[2] Ashish Sureka. Requirements prioritization and next-release problem under
non-additive value conditions. In 2014 23rd Australian Software Engineering
Conference, pages 120–123. IEEE, 2014.

[3] I. Sommerville. Software Engineering. Pearson Addison-Wesley, 10𝑡ℎ edition,
2016.

[4] Amjad Hudaib, Raja Masadeh, Mais Haj Qasem, and Abdullah Alzaqebah. Re-
quirements prioritization techniques comparison. Modern Applied Science, 12, 01
2018. doi: 10.5539/mas.v12n2p62.

[5] Vitor L Massari and André Vidal. Gestão Ágil de Produtos com Agile Think Business
Framework: Guia para certificação EXIN Agile Scrum Product Owner. Brasport,
2018.

[6] Itzel Morales-Ramirez, Denisse Muñante, Fitsum Meshesha Kifetew, Anna Perini,
Angelo Susi, and Alberto Siena. Exploiting user feedback in tool-supported multi-
criteria requirements prioritization. In 25th IEEE International Requirements
Engineering Conference, RE 2017, Lisbon, Portugal, September 4-8, 2017, pages
424–429. IEEE Computer Society, 2017. doi: 10.1109/RE.2017.41.

[7] A.J. Bagnall, V.J. Rayward-Smith, and I.M. Whittley. The next release problem.
Information and Software Technology, 43(14):883 – 890, 2001. ISSN 0950-5849.

[8] P. Baker, M. Harman, K. Steinhofel, and A. Skaliotis. Search based approaches to
component selection and prioritization for the next release problem. In 2006 22nd
IEEE International Conference on Software Maintenance, pages 176–185, Sep. 2006.

[9] José Del Sagrado, Isabel María Del Águila, and Francisco Javier Orellana. Ant
colony optimization for the next release problem: A comparative study. In 2nd
International Symposium on Search Based Software Engineering, pages 67–76. IEEE,
2010.

[10] Stuart J Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2nd edition, 2003. ISBN 0137903952.

[11] José Fernando Gonçalves, Jorge José de Magalhães Mendes, and Mauricio G C
Resende. A hybrid genetic algorithm for the job shop scheduling problem.
European Journal of Operational Research, 167(1):77–95, 2005. doi: 10.1177/
1523422310365309.

[12] M. E. G. Mital, R. Ruzcko N.M.I. Tobias, A. A. Bandala, R. K. Billones, and E. P.
Dadios. Utilization of genetic algorithm in classifying filipino and korean music
through distinct windowing and perceptual features. In 2019 International Con-
ference on contemporary Computing and Informatics (IC3I), pages 121–126, 2019.
doi: 10.1109/IC3I46837.2019.9055676.

[13] D. Lessin and S. Risi. Darwin’s avatars: A novel combination of gameplay and
procedural content generation. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO’15, pages 329–336, 2015.

[14] L. M. Costa, A. C. C. Souza, and F. C. M. Souza. An approach for team composition
in league of legends using genetic algorithm. In 2019 18th Brazilian Symposium
on Computer Games and Digital Entertainment (SBGames), pages 52–61, 2019. doi:
10.1109/SBGames.2019.00018.

[15] O. A. Yarom, S. Jacobitz, and X. Liu-Henke. Design of genetic algorithms for
the simulation-based training of artificial neural networks in the context of
automated vehicle guidance. In 2020 19th International Conference onMechatronics
- Mechatronika (ME), pages 1–8, 2020. doi: 10.1109/ME49197.2020.9286464.

[16] Leonardo Bottaci. A genetic algorithm fitness function for mutation testing. In
Proceedings of the SEMINALL-workshop at the 23rd international conference on
software engineering, Toronto, Canada, 2001.

[17] Vassilios Petridis, Spyros Kazarlis, and Anastasios Bakirtzis. Varying fitness
functions in genetic algorithm constrained optimization: the cutting stock and
unit commitment problems. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 28(5):629–640, 1998.

[18] K. Dahal, Stephen Remde, P. Cowling, and N. Colledge. Improving metaheuristic
performance by evolving a variable fitness function. In EvoCOP, 2008.

[19] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslen.
Experimentation in Software Engineering: An Introduction. Springer-Verlag Berlin
Heidelberg, 1st. edition, 2012.

[20] V. Basili and D. Weiss. A methodology for collecting valid software engineering
data. IEEE Transactions on Software Engineering, 10(6):728–738, 1984.

[21] José M. Chaves-González, Miguel A. Pérez-Toledano, and Amparo Navasa.
Software requirement optimization using a multiobjective swarm intelligence
evolutionary algorithm. Knowledge-Based Systems, 83:105 – 115, 2015. doi:
https://doi.org/10.1016/j.knosys.2015.03.012.

[22] Fitsum Meshesha Kifetew, Angelo Susi, Denisse Muñante, Anna Perini, Alberto
Siena, and Paolo Busetta. Towards multi-decision-maker requirements priori-
tisation via multi-objective optimisation. In CAiSE-Forum-DC, pages 137–144,
2017.

[23] Aruan G Amaral and Glêdson Elias. A multi-objective, risk-based approach for
selecting software requirements. In 10th International Conference on Agents and
Artificial Intelligence, pages 338–346, 2018.

458


	Abstract
	1 Introduction
	2 Background
	2.1 Requirement Prioritization
	2.2 Search-based Requirement Prioritization
	2.3 Genetic Algorithm

	3 SRP approach
	3.1 Fitness Function GUT-D (F1)
	3.2 Fitness function ThS-D (F2)
	3.3 Fitness function ST (F3)
	3.4 Fitness Function LT (F4)

	4 Experimental study
	4.1 Experiment Definition
	4.2 Experiment Design
	4.3 Procedure of Experiment

	5 Results and Discussion
	5.1 Effectiveness of the SRP approach (RQ1)
	5.2 Efficiency of the proposed approach (RQ2)

	6 Related Work
	7 Conclusion
	References

