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ABSTRACT
The quality control is an essential step in fabric industries. Detect
defects in the early stages can reduce costs and increase the quality
of the products. Currently, this task is mainly done by humans,
whose judgment can be affected by fatigue. Computer vision-based
techniques can automatically detect defects, reducing the need for
human intervention. In this context, this work proposes an image
block-processing approach, where we compare the Segmentation-
Based Fractal Texture Analysis, Gray Level Co-Occurrence Matrix,
and Local Binary Pattern in the feature extraction step. Aiming
to show the efficiency of this approach for the problem, these re-
sults were compared with the same algorithms without the block-
processing approach. A Support Vector Machine optimized by Grid-
Search Algorithm was used to classify the fabrics. The database
used, which is available online, is composed of 479 images from
samples with defects and without it. The results show that this
block processing approach can improve the classification results,
achieving 100% in this work.

KEYWORDS
Fabric Defect Detection, Image Processing, Pattern Recognition,
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1 INTRODUCTION
The industrial process’ quality is becoming more important every
day, where the cost reduction and process optimization are increas-
ingly needed [1]. The application of image processing and machine
learning techniques in the quality control process can lead to an
improvement in the production system [2]. The number of works
aiming to solve this problem is increasing, making this step more
precise and improving the production process, where the main goal
is to increase the quality of the products [3].

For example, various types of industries such as ceramic, glass,
food and even fabrics are implementing these techniques to im-
prove quality control [4]. Due to the high growth of the textile

industry and the different manufactured products, it is necessary to
create methods that guarantee the quality of the product in order to
be competitive in the global market [5]. Textile products are man-
ufactured for different purposes and with different technologies,
where their classification varies according to standards. In many
cases, this determines the quality of the product [6].

The Brazilian textile industry is the fifth-largest in the world.
It is considered one of the most powerful and is placed into three
more important sectors in the world’s economy [7]. Furthermore,
its success has a strong relationship with the capacity to reduce the
defects in the textiles. The fabric is a product that is submitted to
delicate processes, where it is difficult to get defect-free products. So,
the quality inspection concerns to reduce the occurrence of defects
in the early stages of production [8]. According to [9], defected
textiles fabrics have their price reduced by 45% to 60% due to defects.

This inspection process needs to be done by specialized profes-
sionals [8]. However, the quality control can become exhausting,
since the human visual system has its limitations and weaknesses
[1]. Human beings can work in one activity like this during some
limited time, getting tired in a couple of hours. Thus, the fatigue
affects the human judgment [10]. Also, sometimes the inspector has
to detect small defects located in a wide area that is moving through
their visual field, resulting in a detection rate of approximately 70%
[11].

In this context, this work proposes a comparative study of al-
gorithms for fabrics defect detection. The methods Segmentation-
Based Fractal Texture Analysis (SFTA), Gray-Level Co-Occurrence
Matrix (GLCM) and Local Binary Pattern (LBP) with and without
block-processing are compared. For classification, a Support Vec-
tor Machine (SVM) is employed. Furthermore, a new database is
presented, being publicly available.

The work is organized as follows: Section 2 presents the works
that are related to this. In Section 3 is presented the adopted method-
ology, describing the database and the algorithms used. Also, in
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Section 4 the obtained results are presented, together with the dis-
cussions. Closing this work, in Section 5, the conclusion is presented, 
with future works.

2 RELATED WORKS
In [6], the authors made a comparison between SFTA and other 
algorithms to automatically select different patterned fabrics, yield-
ing a good detection rate. Although they are also using SFTA, the 
goal in the present work is to detect defects, separating the good 
samples from the ones with defects. Robust results were presented, 
showing the efficiency of the methods in ten patterns of fabric.

In [12], the authors proposed an approach to detect fabric defects 
based on a statistical representation of patterns using Redundant 
Contourlet Transform (RCT), modeled by a finite Mixture of Gener-
alized Gaussians (MoGG). The Bayesian Classifier was used to de-
tect defective fabrics. The experiments were made with the TILDA 
database, where the approach showed good detection rates, with 
low false positives. Compared with other methods, the approach 
presented better results on several types of fabrics.

The authors from [13] also used the TILDA database. In their case, 
they applied Dual-Tree Complex Wavelet Transform (DTCWT) for 
defect detection in fabrics with Euclidean Distance Classifier in 
the classification step. The results showed that DTCWT overcomes 
the results obtained with Undecimated Discrete Wavelet Trans-
form (UDWT). The highlight of this method is the approximate 
shift-invariance, an important property in pattern recognition ap-
plications.

In [14] the authors also used Euclidean Distance in the classifica-
tion step to detect defects in yarn-dyed fabrics, but they proposed 
the use of autocorrelation function and GLCM to describe the fea-
tures. The results showed that the approach can reach accurate 
results, where the highlight of this work is the adaptability of the 
algorithm.

In [15], the authors presented a scheme using local homogeneity 
to find defects in fabrics. In their work, a Discrete Cosine Trans-
form (DCT) is applied to the H-image, that was divided into blocks 
(or windows). After, an Artificial Neural Network (ANN) is used 
to classify the defect accordingly to the training set. Although this 
work presented good results, the necessity of a window size defini-
tion is a limitation.

In [16] the authors developed a real-time machine vision sys-
tem to detect defects automatically. The algorithm is based on the 
Wavelet Transform, double threshold binarization, and morpho-
logical operations. Besides the good results, another highlight of 
this work is the description of a complete system, including the 
acquisition hardware. An approach based on Visual Saliency Maps 
achieved good results in [17]. It was used a SVM in the classifi-
cation step for a two-class problem. The highlight of this work is 
the adaptability of the approach and the low dimensionality of the 
feature vector, which is composed of two features only.

Comparing and combining two classical feature extraction ap-
proaches, GLCM and LBP, in [18] the authors presented robust re-
sults processing samples from TILDA database. The good accuracy 
was achieved using an ANN on the classification step. Their results 
show that in this case, a higher dimension of features was a better 
approach to achieve higher classification rates since the best result

was obtained by the combination of GLCM and LBP. However, it in-
creases the computation time considerably. Also comparing GLCM
and LBP, alongside Histogram of Oriented Gradients (HOG), in [19]
the authors proposed a method to automatically detect defects in
circularly knitted fabrics. The first step is to enhance the defects in
these fabrics. After this, it was tested different descriptors, where
the Random Forest and SVM algorithms were compared. The best
results were achieved using GLCM in one dataset and LBP in the
two others, both classified using the Random Forest algorithm. The
highlight of this work, besides the good classification rate, is the
method to enhance the defects that happen in periodic patterns,
since it can be hard to see even for humans.

3 METHODOLOGY
Themethodology used in this work is similar to the one presented in
[20], where themain differences are the Segmentation step exclusion
and Classifier Optimization step addition. The adopted methodology
is presented in Fig. 1.

Figure 1: The methodology adopted in the work. The step
named Divide image into blocks is presented with dotted
lines because it is used only in the approach with block-
processing.

The proposed algorithms were developed in C/C++ using the
OpenCV 3.4 libraries. The execution was performed using a process-
ing unit with an Intel Core i3-4030U CPU@ 1.90GHz × 2, with 8GB
of RAM, a SSD Sandisk PLUS with 240 GB and an Intel Corporation
Haswell - ULT Graphics Controller. The operating system used was
Ubuntu 18.04 LTS 64-bit.

3.1 Image Acquisition, Pre-Processing and
Labeling

The image acquisition is a fundamental step because if any problem
happens, the whole process can be compromised. The database1
used was created by the authors, using a camera with the resolution
3264 × 2448 pixels, 8-megapixel unit with a f/2.0, 27mm-effective
lens. The sensor is a Sony IMX179 1/3.2” CMOS with 1.4 𝜇𝑚 pixels.
Before the labeling and pre-processing steps, the acquired images
were downsized to half of its original size (1624× 1224 pixels). This
process was necessary to reduce the final computational time.

Aiming to guarantee the quality of the acquired images, this
process was executed in a controlled environment, with artificial
illumination. The internal illumination system was positioned in a
way to avoid creating shadows and/or reflecting light on the fabric.

1The database can be downloaded in: https://tinyurl.com/y74mksao
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However, even in this controlled environment, some difficulties 
were faced in the analysis of the images, such as lack of focus, 
brightness change, and/or other imperfections. These problems 
could drastically compromise the training set composition.

Considering this fact, we decided to initially inspect the parts of 
the fabric with no imperfections, i.e., noiseless parts of the entire 
fabric image. The captured samples passed through a previous 
selection aiming to remove the images that had some noise. This 
initial classification was made by a professional from Loop Jeans. 
After, a label was defined for each selected image.

Since even in a controlled environment it was not possible to 
get rid of some imperfections in the image, only the center of the 
captured images were used to analyze the fabric. Therefore, the 
image was cropped to extract the features, which is the next step 
in the pipeline.

Table 1 shows the division between the patterns on the database. 
Classes 𝐶2, 𝐶3, and 𝐶4 will be treated as one class in this work, 
under the label "with defects". The database contains 282 samples 
of fabrics with defects and 197 without it. After the preprocessing 
steps, the images have a resolution of 919 × 571 pixels, since the 
borders were cropped due to shadows/noises introduced by the 
acquisition system.

Table 1: Division between the patterns in the database

Class Type of Defect Quantity
C1 Without Defects 197
C2 Hole 122
C3 Missing Yarn 86
C4 Oil Spot 74

Total 479

Fig. 2 shows examples of the classes in the database. The fabric
used in this work is of the plain type. These database images also
show that, even on samples with defects, a big part of the image
contains no defects. Some images often contain excessive or dis-
tracting regions, where the test examples sometimes look different
from the training ones [21].

3.2 Divide images into blocks
In [21], Boutell, Luo, and Gray stated that the performance of a
classification system depends on the size and quality of the training
samples. Also, the testing images can contain distracting or exces-
sive foreground regions, sometimes making it different from the
training set, causing a low detection rate. Also in [21], the authors
presented an approach to solving this problem, dividing the images
into blocks (or regions) and processing each one of them. For exam-
ple, dividing an image into a 2 × 2 grid and applying the SFTA on
each region will result in an usual number of features multiplied
by 4 (the number of blocks). Fig. 3 shows an example of how the
image can be divided.

3.3 Feature Extraction
3.3.1 Segmentation-Based Fractal Texture Analysis (SFTA). The SFTA
algorithm [22] can be divided into two parts. In the first, occurs the
decomposition of the input image (in grayscale) into a set of binary

images using Two-Threshold Binary Decomposition (TTBD), also
proposed in [22]. The TTBD takes an input image 𝐼 (𝑥,𝑦) and re-
turns a set of binary images, using the Multi-Level Otsu Algorithm
[23] applied recursively 𝑛𝑡 times. This is a parameter defined by
the user and influences the feature vector size and processing time.
Then, for each resulting image, the fractal dimensions are computed
from the boundaries of its region. This process returns 2𝑛𝑡 images.

In the second part of the algorithm, the pixel quantity and mean
gray level are calculated from the binary images generated by TTBD.
Also, the fractal dimensions of these images, along with the two
features previously cited, will be placed into a vector. The fractal
dimensions are obtained from a binary image 𝐼𝑏 (𝑥,𝑦) and it is rep-
resented as a border-image Δ(𝑥,𝑦). This border-image represents
the region limits of each image and is computed as follows:

Δ(𝑥,𝑦) =


1, if ∃(𝑥 ′, 𝑦′) ∈ 𝑁8 [(𝑥,𝑦)] :
𝐼𝑏 (𝑥 ′, 𝑦′) = 0 ∧ 𝐼𝑏 (𝑥,𝑦) = 1,

0, otherwise.
(1)

Where𝑁8 [(𝑥,𝑦)] represents the group of pixels that are 8-connected
to (𝑥,𝑦). Δ(𝑥,𝑦) is 1 if 𝐼𝑏 (𝑥,𝑦) = 1 and, at least, one of his neigh-
bors is zero. Otherwise, Δ(𝑥,𝑦) is zero. The resulting borders are
one-pixel wide.

Using the Box Counting Algorithm [24], the fractal dimensions
can be computed in linear time. So, the asymptotic complexity of
SFTA is 𝑂 (𝑁 · |𝑇 |), where 𝑁 represents the number of pixels of
the grayscale image 𝐼 , and |𝑇 | is the number of different thresholds
from multi-level Otsu Algorithm [22].

3.3.2 Gray Level Co-Occurrence Matrix (GLCM). The GLCM [25]
is an approach proposed by Haralick, Shanmugam, and Dinstein.
The elements of the co-occurrence matrix can reveal the relative
frequency that pairs of determined gray level values occur, sepa-
rated by a certain distance (or offset). These values are denoted by
Δ𝑥 , representing the number of columns between the pixel and its
neighbors, and Δ𝑦, which corresponds to the number of rows. The
offset is expressed in polar coordinates by the angle 𝜃 and distance 𝜌 .
If an intensity image doesn’t have any texture, the resulting GLCM
would be completely diagonal. The off-diagonal values become
larger as the image texture increases [26].

The GLCMs are normalized and stored in a 𝑁𝑔 ×𝑁𝑔 ×𝑁 matrix.
The 𝑁𝑔 represents the number of gray levels used and 𝑁 is the
number of GLCMs calculated in different orientations and displace-
ments. For example, a GLCM with a size of 8 × 8 means that it was
created using 8 gray levels. The features used to describe the texture
of the image are calculated using the GLCM previously constructed.
In this work, besides the 14 characteristics proposed in [25], it was
used another eight features. To see the description of each feature,
please refer to [25], [27] and [28].

3.3.3 Local Binary Pattern (LBP). The LBP [29] is obtained by the
difference between a central pixel and its circular neighborhood
[30]. If the intensity of the pixel under analysis is greater than
the central pixel, the corresponding cell in the binary code is 1.
Otherwise, is zero. After this process, a matrix with 𝑛 × 𝑚 − 1
bit number is created. The cells in the binary code matrix where
the value is one are summed up to generate the LBP value for the
central pixel [31]. The Equation 2 describes this process.
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(a) Without Defects (C1) (b) Hole (C2) (c) Missing Yarn (C3) (d) Oil Spot (C4)

Figure 2: Patterns of fabrics and its defects present in the database

Figure 3: An example of division into blocks - 2 × 2

𝐿𝐵𝑃𝑛,𝑟 (𝑥𝑐 , 𝑦𝑐 ) =
𝑛−1∑
𝑖=0

𝑠 (𝑝𝑖 − 𝑝𝑐 )2𝑖 (2)

Where 𝑥𝑐 , 𝑦𝑐 is the position of the central pixel, (𝑛, 𝑟 ) represents
the pixel’s neighborhood, 𝑛 and 𝑟 stand for sampling points on a
circle of radius 𝑟 , 𝑠 denotes the sign function, 𝑝𝑐 is the gray level of
the center pixel, and 𝑝𝑖 denotes the gray level of the neighbor pixel.
Also, 2𝑖 is the coefficient for each neighbor to involve textures in
different proportions.

The uniform pattern can be considered as an extension to the
original operator and it is denoted by 𝐿𝐵𝑃𝑢2

𝑃,𝑅
. It is usually used

to reduce the length of the feature vector, implementing a simple
rotation-invariant property, since the original LBP is sensitive to
noise. A local binary pattern can be considered uniform if the

binary pattern contains, at least, two bitwise transitions from 0
to 1, or vice versa, when the bit pattern is traversed circularly.
In the computation of the LBP labels, uniform patterns are used.
Thus, there is a separate label for each uniform pattern and all
the non-uniform patterns are labeled with a single label. After the
LBP labeled image has been obtained, the LBP histogram can be
calculated [32]. It happens because the code distribution over an
image is used to describe the texture as a histogram of the image
[31].

3.4 Optimization, Training and Classification
The SVM was used as classification algorithm. It is efficient, sta-
ble and can present a better performance in the majority of the
problems [33]. Besides, SVM presents a good capacity of generaliza-
tion in real situations, where it usually performs better than other
classifiers, both in predictions and classifications [34].

SVM produces a model based on the training dataset, where it
needs to be able to predict the class of a test sample using only
its attributes [35]. Using a training set, organized as sample-class
(𝑥𝑖 , 𝑦𝑖 ), 𝑖 = 1, ..., 𝑙 , where 𝑥𝑖 ∈ 𝑅𝑛 and 𝑦 ∈ {1,−1}𝑙 , the SVM seeks
for a solution for the optimization problem shown in Equation 3.

min
𝑤,𝑏,𝜉

1
2
𝑤𝑇𝑤 +𝐶

𝑙∑
𝑖=1

𝜉𝑖

Subject to 𝑦𝑖 (𝑤𝑇𝜙 (𝑥𝑖 ) + 𝑏) ≥ 1 − 𝜉𝑖 ,

𝜉𝑖 ≥ 0.

(3)

In this work, the Radial Basis Function (RBF) kernel was chosen,
since it can deal with non-linear data [35]. There are two major
RBF parameters, 𝐶 and 𝛾 , and it must be set appropriately. The
parameter 𝐶 represents the cost of the penalty. The choice of this
parameter influences the classification results. If it is too large, the
classification accuracy rate can be very high in the training phase
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and very low in the testing phase. If 𝐶 is too small, the classification 
accuracy can be unsatisfactory. The 𝛾 parameter affects the parti-
tioning outcome in feature space. If this value is too high, results 
may be overfitted. If it is too small, SVM can lead to an underfitting 
situation [36].

The optimization is an essential step because the wrong choice of 
these parameters can decrease the system accuracy [37]. To find the 
combination of parameters that brings the best accuracy, the Grid 
Search Algorithm [35] was used. This algorithm searches through a 
subset of the hyper-parameter space. The two most common types 
of this algorithm are the Cartesian and the Random grid-search. 
In this work, the Cartesian type was used. It tests each possible 
combination of hyper-parameter values, choosing the one with the 
best cross-validation accuracy [38].

The LIBSVM [38] was used for the implementation of the SVM. 
This library was chosen because it is easy to use and has a large 
amount of documentation. Also, integrate this library into the code 
is very simple.

It is important to scale the data before using the SVM. There are 
two advantages: avoid numerical difficulties during the calculation 
and avoid attributes in greater numeric ranges dominating those 
in the smaller ones [35]. This process consists in transforming the 
data between two limits, an inferior and a superior. In this work, 
the data were normalized by scaling each attribute to the range [-1 
1].

4 RESULTS AND DISCUSSION
The dataset was randomly divided into training set (80%) and test 
set (20%). The SFTA algorithm was applied with 𝑛𝑡 = 3. The 
blocks’ (window) size was defined as 2 × 2. For the GLCM, the 
number of gray levels 𝑁𝑔 was defined as 8, the angle 𝜃 = 0◦ and the 
distance 𝜌 = 1. For the LBP, it was used a radius 𝑟 = 1 and the 
number of neighbors 𝑛 = 8. All these parameters were 
experimentally defined.

The analysis of the necessary computational time to process 
each image was divided into four steps: processing, optimization, 
train, and classification. In each process, the necessary time to run 
the algorithm was computed 25 times. From these values, the mean 
and standard deviation values were calculated. Table 2 presents the 
processing time obtained for each step of this work.

The optimization is the one that takes more time to be executed. 
However, since this step must be applied only when the fabric 
pattern changes, this performance is acceptable. The optimization 
time for the image processed in blocks usually is higher, since there 
are four times more features compared with the complete image. 
Also, the standard deviation shows that this step has a low variation 
in the execution time.

Accordingly to our experiments, SFTA is the algorithm that re-
quires more processing time, both in the complete image and block 
processing approach. However, when the image was processed in 
blocks, the solution took less time if compared with the complete 
image. This was already expected because of the complexity of the 
algorithm, presented in Subsection 3.3. Also, the variation in time 
for this step is relatively low showing the stability of this algorithm.

GLCM achieved the second-best result related to processing 
time and the best result related to the optimization time. In the 
block processing approach, the processing and optimization time

for GLCM increased significantly. However, its performance still
higher than SFTA. The optimization time on this approach had
almost folded up if compared with the complete image approach.

LBP achieved the best processing time among all algorithms for
both cases: complete image and block processing. The computa-
tional time for the optimization step increased significantly, being
three times bigger if compared with the other approach. It happens
because this algorithm is the one that extracts the biggest number
of features.

The training and classification times are small and almost don’t
influence the total time needed to execute the four steps. In every
case, the training and classification time stays below 0.05 seconds.
The only exception is for LBP in the block processing approach
mainly by the number of features extracted.

The search space for Grid-Search Algorithm was defined from
𝐶 = 2−5 to 𝐶 = 215 for the cost and from 𝛾 = 2−15 to 𝛾 = 23 for
the sigma [35]. The Table 3 shows the values obtained for each
algorithm and approach.

Table 3: Optimal parameters obtained with Grid-Search Al-
gorithm

Complete Image Block Processing
𝐶 𝛾 𝐶 𝛾

SFTA 2048 0.125 8 0.125
GLCM 128 2 8 0.5
LBP 8 0.5 2 0.125

In order to measure the system efficiency, accuracy, sensitivity,
and specificity were calculated. The Accuracy represents the total
number of samples that are correctly classified [39]. It is defined by
Equation 4.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 (4)

Sensitivity is defined as the true positive rate. It represents the
measure of samples that have defects and the system has classified
them as "bad" [39]. Is defined by Equation 5.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (5)

Specificity is defined as true negative rate. It shows the probabil-
ity that the system classifies fabric with no defects correctly [39].
Equation 5 shows how this ratio is calculated.

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100 (6)

Fig. 4 shows the accuracy, sensitivity, and specificity achieved
for the complete image approach.

In this case, SFTA achieved the worst classification rate (94,73%)
among all the algorithms, classifying correctly 90 of 95 samples.
LBP had the best accuracy, achieving 98,95% (94 of 95 samples were
classified correctly). Also, GLCM achieved 97,89%, where 93 of 95
fabrics were correctly classified. The best sensitivity was achieved
by GLCM (100%), followed by LBP and SFTA. However, the best
specificity was achieved by LBP (also 100%), followed by SFTA and
GLCM. In this case, it is better to have a good sensitivity since it is
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Table 2: Processing time for each step

Complete Image
SFTA GLCM LBP

Mean (s) Standard Deviation (s) Mean (s) Standard Deviation (s) Mean (s) Standard Deviation (s)
Processing 0.6289 0.0008 0.0707 0.0001 0.0537 0.0003
Optimization 7.1692 0.0205 6.3726 0.0404 11.7336 0.0528

Train 0.0385 0.0018 0.0166 0.0053 0.0393 0.0016
Classification 0.0045 0.0005 0.0040 0 0.0117 0.0008

Block Processing
SFTA GLCM LBP

Mean (s) Standard Deviation (s) Mean (s) Standard Deviation (s) Mean (s) Standard Deviation (s)
Processing 0.6026 0.0002 0.2096 0.0003 0.0507 0.0002
Optimization 12.4651 0.0324 12.4181 0.0543 34.0989 0.0586

Train 0.0382 0.0017 0.0444 0.0026 0.1529 0.0035
Classification 0.0105 0.0007 0.0142 0.0014 0.0529 0.0014

Figure 4: Accuracy, Sensitivity and Specificity - Complete Im-
age

essential to find all defects because it decreases the quality of the
product that reaches the customer.

Fig. 5 presents the results obtained with the block processing
approach. It is important to show that, except by LBP, the other
two solutions achieved a higher classification rate using the block
processing approach.

Both SFTA and GLCM achieved 100% of correct classification
showing that the block processing approach improves the results.
Consequently, the sensitivity and specificity were also 100%. LBP
had the same results obtained with the previous approach, clas-
sifying 94 of 95 samples correctly. This was expected since LBP
proposes a local analysis where it observes the pixel value and
compares it with its neighbors. The same is not true for GLCM,
for example, where the results depend on the analysis made in the
entire image to generate the co-occurrence matrix. However, in the
LBP, when it is used the block processing approach, the influence
of a pixel’s gray level is higher (proportionally) than in the entire
image.

Also, Cohen’s Kappa (𝜅) [40] was calculated. It measures the
agreement between two or more learners, taking into account the
possibility of the agreement occurring by chance [41]. If the raters

Figure 5: Accuracy, Sensitivity and Specificity - Block Pro-
cessing

completely agree, 𝜅 = 1. If there is no agreement besides that what
would be expected by chance (𝑝𝑒 ), 𝜅 ≈ 0 [42]. Table 4 shows the 𝜅
for each approach.

Table 4: Cohen’s Kappa (𝜅) for each algorithm

Complete Image Block Processing
SFTA 0.8926 1
GLCM 0.9562 1
LBP 0.9783 0.9783

When the complete image was processed, the worst Kappa was
achieved by the SFTA, followed by GLCM and LBP. Considering the
LBP, the Kappa value in the two approaches were equal. However, in
the block processing case it is considered theworst result. It happens
because the other two algorithms achieved 100% of accuracy, and it
reflects on the 𝜅 . For all these cases, it shows a substantial to almost
perfect agreement, since all these values are above 0.8 [43].

As described, the detection rate achieved using SFTA and GLCM
with block processing were higher than without it. This can be
explained by the fact that sometimes the defects occupies a small
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part of the image. So, when the whole image is processed once, there 
are many "distracting" parts, influencing in the feature extraction 
step. On the other side, with the block processing approach, these 
defects are evidenced.

Fig. 6 shows examples of samples that were misclassified by the 
SVM. Fig. 6a shows a false positive that was missed by both SFTA 
and GLCM using the complete image approach. In the same sce-
nario, Fig. 6b shows another sample that was incorrectly classified. 
The defect in this image is really small, being difficult to see even 
by a professional. Fig. 6c shows a similar problem where the SFTA 
with the complete image approach could not describe correctly. Fig. 
6d shows a small defect too, where LBP with the block processing 
approach was used. Fig. 6e shows another error, where SFTA with 
the complete image approach was used. Based on these samples, the 
defect which is more difficult to describe is the Missing Yarn. Also, 
all of the images containing the Oil Spot problem were correctly 
classified.

5 CONCLUSION
This work presented a comparative study to detect defects in fab-
rics using a block-processing technique. The SFTA, GLCM and LBP 
algorithms were compared for feature extraction, and SVM was 
used for classification. In order to validate the solution, the same 
algorithms were used to process the images without the application 
of the block-processing approach. The proposed approach demon-
strated better results achieving 100% of accuracy using SFTA and 
GLCM for the tested dataset. The algorithm classifies the samples 
as good (without defects) or bad (with defects).

The proposed approach is the main contribution of this work 
since the division into blocks improved the results for SFTA and 
GLCM. Also, the SFTA was not previously used to detect defects 
in fabrics. The results show that the algorithm is appropriate for 
this type of application since, besides the high accuracy, the pro-
cessing time fulfills the real-time needs. Another contribution is 
the database that is available online.

Even though SFTA is suitable for this type of application, GLCM 
proved to be a better option. The perfect accuracy (with the block 
processing approach) combined with a low processing time shows 
that this approach is the best option among the compared algo-
rithms. LBP showed the lower processing time for the two ap-
proaches showing that it can be an option when this is more im-
portant than the accuracy. Also, the algorithm showed the best 
accuracy when the whole image is processed at once.

One limitation of this work is the acquisition system since it is 
quite simple. It impacts directly the quality of the acquired images. A 
more uniform illumination would most likely improve the detection 
of the defects. Also, the database is unbalanced, with 197 good 
samples and 282 of the bad ones. It was demonstrated that the 
excessive or distracting foreground regions in images can impact the 
results. So, using the block processing approach, the classification 
results can be improved, as well as processing time, depending on 
the algorithm’s complexity.

Deep learning methods were not used in this work because 
there were only 479 samples available on this dataset. Usually, 
Convolutional Neural Networks (CNNs) and deep learning methods, 
in general, need a big amount of data to train a model [44]. We also

opted for classical approaches due to limited hardware resources.
The experiments were done on a personal computer, without any
Graphics Processing Unit (GPU). According to the obtained results,
the proposed solution presented the necessary requisites to solve
this problem, both in accuracy and processing time.

Future works include improving the performance of the algo-
rithms using a General Purpose Graphics Processing Unit (GPGPU)
which supports Compute Unified Device Architecture (CUDA), for
example. Some improvements in the acquisition system should be
made as well, mostly in the illumination system. Furthermore, it
is expected to use an algorithm that detects possible defects and
classify them into the three classes present in the database. Also,
a different number of blocks should be tested (e.g. 3 × 3 or 4 × 4
blocks).
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