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INTRODUCTION

 ESI maps are essential components of oil spill
contingency planning that indicate substrates
demanding specific clean-up actions and response
options considering ecological, recreational and
commercial concerns (Halls et al., 1997). There are,
however, coastal segments with an acute lack of
environmental information, not to mention updated
cartographic databases. This is the case for most of
the north and northeast Brazil, where portions of the
coast virtually devoid of information are interspersed with
regional administrative centers where environmental data
are available. Contrasting with that, sensitivity index
maps are now mandatory in Brazil for any company to
explore, produce or transport oil and its products.

This is the typical scenario where remote sensing
data can effectively aid the acquisition of updated and
relevant environmental data over large stretches of the
coast (>100 km) and the generation of sensitivity maps
(Jensen, et al., 1990; Jensen et al., 1993; El-Raey et
al., 1996; Abdel-Kader et al., 1998). Remote sensing
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images are also invaluable for the identification and
mapping of submerged and intertidal habitats. The use
of ESI maps can also be easily extended to include
planning of environmental management of coastal areas
by adding land use/land cover (LULC) themes.

The selection of appropriate remote sensing data
and the applicable digital image processing techniques
follows a compromise between costs and mapping
capabilities, including coverage area, spectral and spatial
resolution (Green, 2000). Computer-based supervised
classification of multispectral imagery demands
extensive field survey to reduce misclassification,
yielding average accuracy figures around 70%. On the
other hand, visual interpretation from color composites
of TM images has been considered as ground truth
because it relies on context-dependent decisions carried
out by the human brain (Green et al., 2000). However,
the dependency on the visual interpretation skills and
subjectivity of the analyst is generally considered a major
drawback.

In this paper we present a mapping scheme that
makes use of automated and visual Landsat ETM+
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image interpretation to generate ESI and LULC maps.
Initially, ETM images were radiometrically corrected to
surface radiance and submitted to a restoration filter.
Next, spectral transformation based on IHS and image
filtering were performed. The IHS images were
segmented and submitted to unsupervised classification
to be evaluated for contextual editing. Visits to the field,
assisted by global positioning system, were carried out
to determine shoreline sensitivity, LULC classes, and
compare classification results.

MATERIALS AND METHODS

We have investigated a 140 km long section of
the northeast Brazilian coast (Fig. 1) located on the
second largest oil bearing sedimentary basin in Brazil,
called the Potiguar basin measuring 41 000 km2 (Bertani
et al., 1990). The coastline has a NW/SE orientation

and is formed by a complex system dominated by
medium to fine sand beaches, bounded by the Jaguaribe
river to the northwest (Ceará state), and Mossoró river
to the southeast (Rio Grande do Norte state). The area
is characterized by a number of sensitive coastal
habitats, including a wave-dominated delta in the mouth
of Jaguaribe river. To the southeast a system of mobile
low-tide sand terraces dominates the mouth of Mossoró
river. The Icapuí estuary is located in the central portion
of the study area, which is fed by water seeps flowing
from Tertiary sandstone (Barreiras Formation)
outcropping 2 km inland. In front of this estuary there is
also a well developed 32 km2 low-tide fine sand terrace
located, with subtidal algal beds at the distal portion.
This biological resource has been continuously explored
by the local community that sells sun-dried seaweeds
to the cosmetic industry. Important changes in LULC in
the region, associated to the substitution of traditional
salinas for the more lucrative shrimp farming, have

Figure 1 – The study area covers 140 km of coastline and is located in the Northeast Region of Brazil, including the Potiguar and Ceará
sedimentary basins. The ESI maps are labeled from A to G.
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recently raised concerns. This land-use change has been
generally followed by acute land-cover changes with the
conversion of mangrove areas to shrimp grow-out ponds.

Field data collection
We visited the study area in three different

occasions to gather detailed information on land cover,
wave and current exposure, and composition of the
different substrates. A total of 27 beach sediment
samples were collected to aid the determination of
sediment texture necessary to assign beach sensitivity.
A sensitivity index oriented data gathering protocol was
devised to guarantee maximum efficiency during
fieldwork, which included interviews with local fishermen,
shrimp farm owners and villagers.

Digital image processing
Image processing scheme (Fig. 2) starts with

Landsat ETM+ (216/063 acquired in 13/08/1999)
multispectral bands (except the thermal infrared band
6) and the panchromatic (pan) band being corrected to
surface reflectance using the 6S code (Second
Simulation of the Satellite Signal in the Solar Spectrum,
Vermote et al., 1997). Images were submitted to a
restoration filter (Fonseca et al., 1993) that corrects for
electronic noise and allows the resampling of
multispectral bands to 15 m, and the pan band to 5 m
of pixel size. All routines used for digital image
processing and geodatabase creation were carried out
on the software SPRING (Câmara et al., 1996). After
atmospheric correction and restoration, the
panchromatic image was georeferenced using ground
control points, and subsequently used for co-registration
of multispectral bands.

The pre-processed images were used to generate
standard and selective (eigenimages for the visible bands
1, 2 and 3) Principal Component (PC) images (Chavez
et al., 1989; Manière et al., 1991), component fractions
from Spectral Mixture Model (SMM) (Shimabukuro and
Smith, 1991; Shimabukuro et al., 1998; Aguiar et al.,
1999), Soil Adjusted Vegetation Images (SAVI) (Huete,
1988), and Intensity, Hue, Saturation (IHS) transform.
The aim was to visually estimate their performance in
terms of a consistent segmentation and classification
of most coastal environments and LULC themes,
particularly vegetation cover. A good classification has
to contribute for contextual editing creating a sufficiently
large number of regions, and a low level of
misclassification.

IHS transformation (Carper et al., 1990; Harris et
al., 1994) has been applied to the RGB (Red, Green
and Blue) composite of ETM bands 1, 2, and 3, restored
to 15 m pixel size. The pan image restored to 5 m pixel
size replaced the intensity image produced by the
spectral transformation of the RGB composite. Prior to

the substitution the pan image was normalized to the
reference intensity image created by IHS transformation
(Gross and Schott, 1998). The process is completed
when the intensity, hue and saturation images are
transformed back to RGB space.

The processed images were segmented using a
region growth algorithm (Bins et al., 1996) that
establishes each region as a set of homogeneous pixels
grouped according to their radiometric and spatial
properties (Zucker, 1976). Algorithm functioning is briefly
described as follows: first, let kiki MMRRD −=),(
be the Euclidean distance between the spectral mean
values of the regions Ri and Rk, and let N (R) be the set
of neighboring regions of R. Then, a list of regions {Ri, i
= 1,..., n} is created (n is the number of pixels in the
image). Segmentation starts with a seed pixel for each
Ri where mean value vector and neighboring regions are
stored. The most similar neighboring region Rk ∈ N(Ri)
is chosen, so that if D (Ri, Rk) < T(t), then Rk is the best
neighbor of Ri and both regions are merged. T (t) is the
similarity threshold value at instant t and, initially, only
very similar regions are merged so that T (t) = a t T (0),
with T (0) > 0, t = 0, 1, 2,... and a < 1.

Segmentation parameters were selected
empirically, similarity threshold was set to 5, which is
the maximum Euclidean distance between the mean
digital numbers of two regions that will determine their
grouping. The area threshold has been set to 50 pixels
for images with 15 m pixel size, and 150 pixels for
images with 5 m  pixel size (restored images).

Figure 2 – Image processing scheme showing the hybrid automated
and visual image interpretation for ESI and LULC mapping.
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The unsupervised classification clustering
algorithm ISOSEG (Bins et al., 1993) was applied to
the segmented images and the per-region acceptance
threshold has been set to 99%. This threshold is defined
as the maximum value of the Mahalanobis distance that
regions can be apart to be considered as pertaining to
the same class. The classification algorithm uses the
covariance matrix and mean vector of the regions to
estimate the centers of each class. This procedure
generates a large number of classes, making it easier
to map coastal environments and LULC units.

ESI and LULC mapping
Environmental sensitivity index (ESI) maps

include information on shoreline classification, biological
and human-use resources, allowing shoreline habitats
to be ranked according to the biological sensitivity,
natural persistence of oil and ease of clean-up.
Information on biological resources includes oil-sensitive
animals and non-shoreline habitats such as submerged
aquatic vegetation and coral reefs. Specific areas that
incorporate added sensitivity and value to humans such
as high-use beaches, parks, marine sanctuaries and
water intake are grouped into human-use resources
(Michel et al., 1978; Gundlach e Hayes 1978; Michel,
1998). Ranking of coastal environments range from ESI
1, low sensitivity coasts, to ESI 10, high sensitivity
coasts (Table 1) and expresses the relationships among
physical processes, substrate type, and associated
biota (Halls et al., 1997).

All maps were produced by matrix editing of
unsupervised classification aided by visual interpretation
of the transformed images. Editing regrouped classes
into a LULC legend based on the phytoecology classes
proposed by IBGE (1992), and complemented with
information collected during visits to the field. At a later
stage, all mapped LULC classes were transformed from
raster into vector polygons. Biological and human-use
resources necessary for the determination of ESI were
edited as vectors onto LULC units, which helped to
derive the occurrence of sensitive habitats and biological
communities. The empirical accuracy of the
segmentation/classification scheme has been assessed
based on field verification of results for each class.
Confusion and adequacy of class generalization to the
research purposes were heuristically checked (see
Shimabukuro et al, 1998 for a similar approach).

The logical structure of the geographic database
was developed based on the object-oriented data model
for geographic applications called OMT-G (Object
Modeling Technique for Geographic Applications)
(Borges et al., 2001), based on the classic OMT class
diagram notation. The OMT-G allowed the representation
of the geometry and topology of spatial data with
diagrams representing object classes and their

relationships, transformation operations between
classes, and various visual aspects necessary to
represent each object class.

RESULTS

Visual interpretation of restored images and spectral
transformations

The restoration filter applied to the ETM images
sharpened most linear features such as roads (both
paved and unpaved) city blocks, rivers and small
channels, and shoreline. As a result, greater separability
was achieved for low contrast landscape features such
as small coastal villages, salt and shrimp ponds. It also
helped in the definition of some coastal habitats, namely
mangroves

All classification products, contextual editing, and
definition of map themes were checked in the field, and
the resulting maps can be regarded as an adequate
approximation to ground truth. The resulting LULC legend
for the study area is as follows: coastal dune, coastal
sand deposit vegetation (hereafter refereed to as
restinga), bare soil, forested steppe savannah, scrub
steppe savannah, steppe savannah woodland, steppe
savannah complex, grassland steppe savannah
complex, mangrove, cashew crop, palm (coconut and/
or carnaúba palm), salt pond, urban area, and village.

Classification of segmented IHS images produced
optimum spectral separation and class partitioning with
a large number of classes and negligible
misclassification (Fig. 3). Classification was consistent
across different environmental units within the study area
without spectral artifacts, and improved overall efficiency

Table 1 – ESI shoreline classification (Michel, 1998).
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of contextual editing and ESI/LULC mapping (Fig. 4).
The combined use of a restoration filter and IHS
transformation allowed a clear delimitation of most
coastal environments and linear features such as non-
paved roads that are used as accesses to different
portions of the shoreline.

ESI and LULC mapping
Classification of IHS merged images allowed the

direct ESI mapping of mangrove forests (10D), exposed
and protected intertidal and subtidal habitats (7 and 9A/
9B). Classes pertaining to other ESI habitats were
mapped from contextual editing of classification aided
by visual inspection of IHS composites. Data necessary
for ESI maps, such as location and area extension of
coastal environments, accesses to shoreline, and
substrate trafegability, have been retrieved from GIS
operations performed on the geodatabase. A total of nine
1:50 000 maps representing coastal sensitivity to oil
spill (Fig. 5) were produced, and included river drainage,
sensitivity index, accesses, biological and human-use
resources, and LULC. Sensitivities assigned to the
shoreline and intertidal/subtidal environments were
represented by lines and polygons linked to tables with
detailed biological information.

Fine-grained sand beaches (ESI 3A/3B)
predominate in all coastal segments, extending along

112.5 km of coastline, while exposed tidal flats (ESI 7)
represents the greatest surface-related index with 37.7
km2. A sequence of co-occurring substrates composed
of impermeable exposed rocky cliffs (mostly associated
to the Barreiras Formation, ESI 1A), sand beaches (ESI
3A/3B) or wave-cut rock platforms (2A) has been
observed in the beaches of Canoa Quebrada, Retirinho,
Ponta Grossa, Barreiras and Barrinha.

Fine- to medium-grained sand deposits extends
along 13 km of the western banks of the Jaguaribe river
and were classified as ESI 3D. This index does not
exist in the original scale of the ESI, and was taken
from the Reach Sensitivity Index (RPI, 2003). Some gravel
deposits (ESI 6A) have also been found along 1.5 km of
this side of the river. These sand banks and gravel
deposits occur along the base of the tectonically
generated sheltered rocky shores (ESI 8A).

Exposed tidal flats (ESI 7) occur in the Jaguaribe
river, Mossoró river and Icapuí estuaries and near
Upanema beach. Sheltered tidal muddy flats (ESI 9A)
occurs in the Jaguaribe and Mossoró river estuaries
(Pontal de Maceió and Barra de Upanema,
respectivelly), and are generally associated to
mangroves. Vegetated low banks (ESI 9A, 9B) also occur
in the Jaguaribe river eastern banks, close to the estuary,
which are highly sensitive to oil. Mangroves (ESI 10D)
occur in higher densities in the Jaguaribe river eastern
banks, in the Mossoró river and in the Icapuí estuary.

DISCUSSION

The study area is characterized by diverse coastal
environments with highly fragmented land use and
vegetation cover types, the latter resulting from over a
century of human-use impacts. Thematic mapping from

Figure 3 - Example of the segmentation by region growth algorithm
for different image processing products (background is an IHS
composite): (a) PC1 of the standard PC; (b) PC1 of bands ETM1, 2,
and 3, PC1 of bands ETM5, 7 and band ETM4; (c) shadow fraction
image; (d) vegetation fraction image; (e) soil fraction image; and (f)
IHS image. Segmented area is part of the map A1 seen in Figue 1
and is 9 km across.

Figure 4 - Unsupervised digital classification of the segmented
images. Legend is the same as in Figure 3.



Carvalho & Gherardi: Mapping the environmental sensitivity to oil spill and land use.

6

remote sensing data relies on image classification,
achieved by either visual or computer-aided analysis
(Foody, 2002). We have attempted a hybrid approach
for ESI and LULC mapping, based on image
segmentation and unsupervised classification supported
by visual image interpretation and ground truth. This
has been devised to reduce analyst bias during visual
interpretation caused by incomplete knowledge of the
environments that are being mapped. It also has the
potential to reduce the need for expert knowledge upon
local environments found along the highly diverse
Brazilian coastline. The option for the region growth
segmentation was based on the advantage of
connecting pixels into a physical region with similar
properties on the earth, which are clustered in a spatial-
spectral fashion. Since all classification products were
checked in the field and classification editing was carried
out based on field information, the resulting maps can
be regarded as a close representation of ground truth.

Spectral transformations were selected according
to their capabilities to improve target definition, and
discrimination of coastal environments after being

submitted to segmentation and classification algorithms.
For a proper contextual editing classification has to
consistently discriminate major environments and
generate at least twice as many classes as required so
that analyst can merge or delete classes with reference
to field data (cf. Green et al., 2000). Our results show
that total number of classes is not a sufficient condition
for a good classification performance, but adequate
definition of linear features and other high frequency
information such as LULC boundaries within the scene
are also important. Definition of themes followed
recommendations from IBGE (1992) but the original
vegetation cover has been largely altered imposing
limitations to the strict use of classification protocols.

Merging of the restored ETM panchromatic image
with the restored multispectral bands in the IHS system
improved visual interpretability due to edge enhancement
and high contrast of different scene targets. This allowed
the detection and mapping of paved and unpaved roads,
coastline, fluvial and tidal channels, and small coastal
villages. Contrast between different LULC units has also
been increased, maximizing the number of classes

Figure 5 – Detail of the ESI map from the Jaguaribe River, in Ceará state. Shoreline and habitats are colored following the sensitivity index
color code (Halls et al, 1997). Symbols indicate the location of biological and human-use resources.
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generated by the segmentation/classification procedure.
SAVI images failed to produce a good classification of
open vegetation, but it was used for contextual editing
of cashew crop and pioneer vegetation such as those
found on coastal sand deposits. The identification of
linear features and boundaries between different
environments is of paramount importance for ESI
mapping because it allows the determination of location
and spatial extent of biological and human-use
resources. Accesses to river banks, beaches, and limits
to intertidal habitats became easily discernable, helping
to correctly assign sensitivity indexes.

Standard PC analysis of all ETM bands (except
for band 6) was run prior to the selective PC to check
for overall interband correlation, and showed that the
first principal component concentrated only 87.44% of
total variance. This higher dimensionality has been also
detected in the correlation matrix (Table 2) indicating
high correlation among bands from the visible (bands
ETM1, 2 and 3), and the infrared spectra (bands ETM4,
5 and 7). Band loadings for all eigenvectors show major
spectral contrasts in bands ETM1, 4, and 5 (Fig. 6),
possibly associated to water and vegetation
reflectances. In fact, the first eigenvector has all positive
band components within a very narrow loading interval,
as seen in Figure 3. Results from the selective PC
procedure increased variance concentration on the first
component to 93.09% and 99.25% for the visible and
infrared ETM bands, respectively.

CONCLUSIONS

Image restoration and the consequent reduction
in pixel size improved the definition of linear features
without introducing the sawtooth effect or radiometric
artifacts. Merging of the restored ETM panchromatic
image with the restored multispectral bands via IHS
maximized the number of classes generated by the
segmentation/classification procedure, making it easier
to map these classes. It also improved the contrast
between different LULC units and the visual identification
of paved and unpaved roads, fluvial and tide channels,
and small villages.

SAVI images were of limited use but helped the
contextual editing of cashew crop and pioneer vegetation.
Classification of IHS merged images also allowed the
direct mapping of the ESI for mangrove forests (10D),
exposed and protected and highly sensitive intertidal
and subtidal habitats (7 and 9A/9B). The use of
automated and visual image interpretation proved to be
particularly useful for mapping the ESI and LULC.
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