ADOPTION OF ONLINE SHARED HOSTING PLATFORMS: A STUDY OF USERS’ BEHAVIOR OF THE AIRBNB SYSTEM

ADOÇÃO DE PLATAFORMAS DE HOSPEDAGEM ONLINE COMPARTILHADAS: UM ESTUDO DO COMPORTAMENTO DE USUÁRIOS DO SISTEMA THE AIRBNB SYSTEM

ADOPCIÓN DE PLATAFORMAS DE HOSPEDAJE EN LÍNEA COMPARTIDOS: UN ESTUDIO DEL COMPORTAMIENTO DE USUARIOS DEL SISTEMA AIRBNB SYSTEM

JULIANA MARIA MAGALHÃES CHRISTINO
PhD in Business Administration from the Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
Adjunct Professor of Administration, Faculty of Economic Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.

julianam.prof@gmail.com
Orcid: http://orcid.org/0000-0003-0186-9704

THAÍS SANTOS SILVA
MA in Business Administration from the Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
Doctoral student in Administration of the Graduate Program in Administration of the Federal University of Minas Gerais CEPEAD/FACE – UFMG, Belo Horizonte, Minas Gerais, Brazil.

tha.silva25@gmail.com
Orcid: http://orcid.org/0000-0001-7927-495X

ERICO AURÉLIO ABREU CARDOZO
MA in Business Administration from the Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil.
Doctoral student in Business Administration of the Post-Graduation Program in Administration of the Federal University of Minas Gerais CEPEAD/FACE – UFMG, Belo Horizonte, Minas Gerais, Brazil.

erico.cardozo@gmail.com
Orcid: http://orcid.org/0000-0002-5100-5464

ANA GABRIELLE RIBEIRO LOPES
Bachelor’s degree in Business Administration from the Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
Faculty of Economics, Belo Horizonte, Minas Gerais, Brazil.

agribeirolopes@gmail.com
Orcid: http://orcid.org/0000-0002-6922-7524

Licença CC BY: Artigo distribuído sob os termos Creative Commons, permite uso e distribuição irrestrita em qualquer meio desde que o autor credite a fonte original.
ABSTRACT: The multiplication of shared hosting models in tourism and the growth of the Airbnb platform have impacted the tourism industry. This study aims to verify, through the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2), the factors involved in the process of adoption and intention to use the Airbnb platform by Brazilian users. This study, which is characterized as a quantitative research study of the survey type, was applied to 263 individuals who knew the platform; for the data analysis, Partial Least Squares Structural Equation Modeling (PLS-SEM) was used. The results show that the constructs: Performance Expectancy, Effort Expectancy, Social Influence and Habit, have an impact on the intentions of individuals. By highlighting these factors, this study contributes to the identification of consumer motivation and the expansion of Airbnb in Brazil. It also extends the use of the UTAUT2 model to the context of shared economy.

KEYWORDS: Shared Hosting, Airbnb, UTAUT2.

INTRODUCTION

The expression of consumer desire has changed. Alongside traditional markets based on the need for ownership, there is the emergence of alternative modes for acquisition and access-based consumption. Unlike buying and owning goods, consumers in this new model prefer to pay for temporary access to the experience. Consumption time is acquired with the item and, in cases of access mediated by the market, a price is paid for it. (Bardhi, & Eckhardt, 2012).
In tourism, business models of access-based economies, especially shared hosting, have multiplied, becoming attractive opportunities for innovation (Guttentag, 2015; Dredge, & Gyimóthy, 2015). The growth of this model is a reflection of the problems that characterize the traditional tourism industry, such as: the existence of large amounts of dead capital, idling assets and latent expertise; high transaction costs and distorted information between market actors and; tourists’ preferences that go beyond simplified and impersonal experiences, services and products (Dredge, & Gyimóthy, 2015).

Unlike traditional business models, access-based economies or shared economies rely on the internet, lower prices for more personalized products/services, non-ownership of assets, the ability to access idle resources, and unconventional workforce (Mao, & Lyu, 2017). As the most prominent hosting company in this model, Airbnb, an online platform that allows individuals to share rooms or entire apartments as alternative accommodation to hotels, has received attention mainly due to its rapid growth and potential impact on the hosting business model, in the tourism industry, as well as in tourist destinations. It also has the potential to change individuals’ travel patterns and behavior (Heo, 2016; Tussyadiah, 2015, 2016).

The Airbnb platform in Brazil already has about 123 thousand ads and, in 2016, registered the arrival of more than one million tourists in the country. In the same year, Rio de Janeiro was the fourth destination for Airbnb ads worldwide, surpassed only by Paris, London and New York (Ramos, 2017).

And in 2016, the platform had an economic activity (host income + guest expenses) moving around R $1.99 billion (Airbnb, 2017). This growth is associated with the global and Brazilian economic scenario, in which there is an increase in the number of unemployed people. Collaborative tourism may present an opportunity for those wishing to rent out their idle assets, and for tourists wishing to reduce their travel costs (Zervas, Proserpio, & Byers, 2013).

Given that shared hosting platforms can alter the logic of the tourism sector, in terms of competition and operation, understanding the performance and perception of managers and consumers is very important. Some managers of the Brazilian hosting segment still have little knowledge about the platform, although it is already widely used by consumers (Ferreira et al., 2017).

In this regard, when adopting the perspective of consumer behavior related to access-based consumption, here discussed through the Airbnb platform, it is especially important to understand, in more depth, the influential factors on intention to use (Mao, & Lyu, 2017). Since existing and potential customers can easily return to traditional service providers, i.e. hotels, a deeper analysis of the factors that impact intention to use, in this specific context, can contribute to the sustainable growth of the platform, as well as serving as input for the development of future business models.

In the literature, there has been little comprehensive discussion of the facts that make up the behavioral intention to use of individuals involved in shared hosting, or why many of them are still reluctant. Möhlmann (2015), for example, identified the positive effects of familiarity with the tool and its usefulness in intention to use Airbnb. Environmental impact, Internet capacity, smartphone capacity and trend affinity were not influential on intention to use (Möhlmann, 2015). Tussyadiah (2016), on the other hand, found positive economic and social benefits on the intention to use shared hosting, and identified a different effect of social benefits, depending on the type of accommodation chosen by the user.
Although these studies are useful, and point to contributions to the understanding of behaviors associated with shared hosting, few studies consider models and psychological theories and acceptance of mainstream technologies in the research flow of consumer behavior (Satama, 2014; Wang, & Wu 2017; Mao, & Lyu, 2017). Mao and Lyu (2017), for example, incorporate the Prospect Theory (PT) and the Theory of Planned Behavior (TPB) in the context of Airbnb, to investigate the behavioral intention of consumers to (re)purchase in the field of hospitality and tourism. The authors identify the significant effects of attitude, subjective norms, perceived risk, value, experience expectation, social circles, and word of mouth (WOM) (Mao, & Lyu, 2017).

However, other factors can also be included to make the Airbnb intention to use models more comprehensive, e.g. technological factors, habits, performance expectancy and cognitive factors, to name a few (Satama, 2014; Wang, & Wu 2017). Also, behavioral variables can be altered and present different effects and magnitudes in other countries, since the Airbnb platform was created in the USA, and it is still growing. This purpose of this study is to verify the factors involved in the adoption process and intention to use the Airbnb platform by Brazilian users, based on the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2).

THEORETICAL FRAMEWORK

The reasons whereby individuals adopt new information technologies are explained by several theoretical models, based on information systems, psychology and sociology (Venkatesh et al., 2003). Among the different models, eight theories have become prominent. Based on these, Venkatesh et al. (2003) introduced the Unified Theory of Acceptance and Use of Technology (UTAUT), generating a new strong base model for acceptance studies (Baptista & Oliveira, 2015).

UNIFIED THEORY OF ACCEPTANCE AND USE OF TECHNOLOGY (UTAUT)

The Unified Theory of Acceptance and Use of Technology (UTAUT) was developed in 2003, based on the review and consolidation of eight theories and models used to explain behavior and use of information systems: the Theory of Reasoned Action (TRA), the Technology Acceptance Model (TAM e TAM 2), the Motivational Model (MM), the Theory of Planned Behavior (TPB), the Combined TAM and TPB (C-TAM-TPB), the Model of PC Use (MPCU), the Innovation Diffusion Theory (IDT), and the Social Cognitive Theory (SCT).

The proposed model summarized concepts and established four determinants that predict Behavioral Intention and Use Behavior: Effort Expectancy, Performance Expectancy, Social Influence, and Facilitating Conditions.

Since its inception, UTAUT has been used in several contexts, and applied to various technologies and to individual or organizational use behavior (Baptista & Oliveira, 2015). Despite its widespread use and its detailed explanatory power in intention to use, the model presented limitations that led to the development of UTAUT 2, which extends and improves the theory, applying it to a context of consumer use (Venkatesh, Thong, & Xu, 2012).
The Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) was developed by Venkatesh, Thong and Xu (2012) as an extension and adaptation of the original UTAUT model. Existing key constructs (Effort Expectancy, Performance Expectancy, Social Influence and Facilitating Conditions) were adapted from an organizational context to a context of consumer use. It was also extended with three new constructs, to make it more appropriate for the new context: Hedonic Motivation, Price Value and Habit.

The constructs of Effort Expectancy, Performance Expectancy, Social Influence and Facilitating Conditions remained as influencers of Behavioral Intention, along with Hedonic Motivation, Price Value and Habit. The construct Facilitating Conditions has gained a new relationship: it influences Use Behavior, along with Habit and Behavioral Intention.

The construct Performance Expectancy is defined as the degree to which the use of a technology will provide benefits for consumers in carrying out certain activities (Venkatesh, Thong, & Xu, 2012). Within each original model, this construct was found to be the strongest predictor of intention and remained significant at all measurement points performed by Venkatesh et al. (2003). This study evaluates the degree to which the use of Airbnb provides benefits to users in relation to hosting.

Performance Expectancy has been used as a significant travel predictor, especially when it occurs through e-commerce and is related to the adoption of technologies (Ayeh, et al., 2012; Gupta, & Dogra, 2017). Previous studies have found this construct to be the strongest precedent for behavioral intentions, and it does not present significant variation across cultures (Im, Hong, & Kang, 2011).

The following research hypothesis is proposed:

Hypothesis 1: Performance Expectancy has a positive impact on Behavioral Intention to use Airbnb.

The level of ease associated with the use of technology by consumers is known as Effort Expectancy (Venkatesh, Thong, & Xu, 2012). Venkatesh et al. (2003) states that ease of use has a positive effect on the acceptance of new technologies. In the model, Effort Expectancy positively influences Behavioral Intention, a result that is supported by other works (Macedo, 2017). The present study evaluates the level of ease associated with the use of the Airbnb platform.

As Godoe and Johansen (2012) point out, the perceived ease of use of a technological tool favors the perception of its usefulness. Some easy-to-use applications may be perceived as useful, but not all useful applications are easy to use. Consumers prefer easy-to-use technologies and understand that they have the highest efficiency (Gupta, & Dogra, 2017). Ease of use is the key to online travel purchase (Amaro, & Duarte, 2013). Therefore, the next hypothesis is proposed:

Hypothesis 2: Effort Expectancy has a positive impact on Behavioral Intention to use Airbnb.
The Social Influence construct is defined as the extent to which consumers perceive that people in their social environment, such as friends and family, consider it important to use a particular technology. Social Influence is composed of three variables: subjective norm, social factors and image (Huang, & Kao, 2015).

Subjective norm is related to the perceived pressure to use a certain tool; social factor is the internalization of the individual, from the subjective culture of the social system, from the interpersonal arrangements made with others and; image is defined as the degree to which an individual identifies that the use of an innovative technology can improve their status in their social organization (Huang, & Kao, 2015). Venkatesh et al. (2003) and Venkatesh, Thong and Xu, 2012 (2012) theorized that Social Influence is a determinant in Behavioral Intention.

Opinions on consumer behavior were reinforced by studies investigating the adoption of mobile shopping services (Yang, 2010), the adoption of online banking services (Luo et al., 2010) and the adoption of mobile applications (Hew et al., 2015). In this work, Social Influence was measured by how respondents view the opinions of people that matter to them, regarding the use of the Airbnb platform.

So, the following hypothesis is proposed:

Hypothesis 3: Social Influence has a positive impact on Behavioral Intention to use Airbnb.

The construct Facilitating Conditions refers to the consumers’ perceptions of the resources and support available to use technology (Venkatesh, Thon, & Xu, 2012). Facilitating conditions are environmental factors and can vary significantly amongst different platforms. Engaging consumers in certain tasks will depend on an infrastructure of conditions capable of facilitating the necessary interactions. Travel hosting environments are usually based on trust in technologies that are familiar to consumers, which helps to weaken the adoption barriers (Morosan, & DeFranco, 2016).

According to Venkatesh, Thong and Xu (2012), facilitating conditions will act more like a perceived behavioral control, and will influence intention and behavior (Ajzen, 1991). A consumer who has access to a favorable set of facilitating conditions is more likely to have a greater intention to use a particular technology (Venkatesh, Thong, & Xu, 2012). This relationship was validated by previous studies (Dwivedi et al., 2016).

Thus, Facilitating Conditions are related both to Behavioral Intention and Use Behavior, and are measured in this research as the individual’s perception regarding the availability of resources and supports for the use of Airbnb.

The following hypotheses are presented:

Hypothesis 4a: Facilitating Conditions have a positive impact on Behavioral Intention to use Airbnb.

Hypothesis 4b: Facilitating Conditions have a positive impact on Use Behavior of Airbnb.

The Hedonic Motivation construct, defined by Venkatesh, Thong and Xu, 2012 (2012) as fun or pleasure derived from the use of a technology, also known as intrinsic motivation (Vallerand, 1997), was added to the extended model, acting as a predictor of
Behavioral Intention. It is more subjective and personal, and is related to the essence of individual’s psychological experience (Huang, & Kao, 2015; Ozturk et al., 2016). Hence, from a hedonic perspective, consumers are seeking pleasure through the use of a product or service, considering the purchase process as a pleasant practice (Anderson et al., 2014).

In this research, it is understood as the perceived pleasure of using Airbnb. The existing literature supports the positive relationship between hedonic motivation and technology adoption behavior (Baptista, & Oliveira, 2015). In relation to the context of online hosting reservations in particularly, Ozturk et al. (2016) emphasize the hedonic and utilitarian dimensions as critical determinants in the ongoing use of tools.

The next hypothesis is therefore proposed:

Hypothesis 5: Hedonic Motivation has a positive impact on Behavioral Intention to use Airbnb.

Price Value is defined as the cognitive trade-off of consumers between the perceived benefits of the product and/or service and the monetary cost to use them. An important difference between consumer and organizational contexts, which led to the inclusion of the Price Value construct in the model, is that consumers usually bear the monetary cost of using technology, while employees do not (Venkatesh, Thong, & Xu, 2012).

Consumers, as Alalwan et al. (2017) point out, are predisposed to adopt a certain technology based on their budgetary constraints. They therefore analyze the utilities included in new systems, and compare them with the financial cost of the system itself (Alalwan, Dwivedi, & Rana, 2017). Baptista and Oliveira (2015) reinforce that in the context of the adoption of internet technology, the Price Value construct integrates elements such as device cost, data service operators cost and transaction fees.

It is thus verified that:

Hypothesis 6: Price Value has a positive impact on Behavioral Intention to use the Airbnb platform.

The Habit construct is defined by Limayem, Hirt and Cheung (2007) as the extent to which people tend to perform behaviors automatically due to learning, in other words, the degree to which the individual believes behavior to be automatic. Unlike reflexes, in order for a behavior to become a habit, a learning process is necessary. That is, a composition of short-term repetitions, reinforcement, clarity of situation, interest and ability to learn (Pahnila, Siponen, & Zheng, 2011).

As Wilson and Lankton (2013) point out, prior behaviors and habits, though closely related, are not identical constructs. Repeated occurrence is fundamental to create a habit, but does not produce the habit itself. Habits tend to be formed where behaviors are repeated and the context is stable (Wilson, & Lankton, 2013). According to Hsu, Chang and Chuang (2015), in the online shopping environment, habit is considered an automatic behavior, a reaction that is stimulated by a cause or environment, without a conscious mental process, due to the accumulation of prior experience between behavior and satisfactory results.

Venkatesh, Thong and Xu (2012), postulate that Habit has a direct effect on Behavioral Intention. This relationship is confirmed by Herrero, Martín and Salmones (2017). Since the
Airbnb platform is a recent phenomenon, the following hypotheses are proposed:

Hypothesis 7: Habit has a positive impact on Behavioral Intention to use Airbnb.

and:

Hypothesis 8: Habit has a positive impact on Use Behavior to use Airbnb.

Finally, Behavioral Intention construct remains as in the first UTAUT theory, in which it is considered to be the mediator construct of Use Behavior, namely, the degree to which the individual feels motivated to adopt a certain type of behavior. That is, the intention to use or continue to use a technology in the future. In this research, it refers to the respondent’s intention to use the Airbnb hosting platform.

For this, the last hypothesis is raised:

Hypothesis 9: Behavioral Intention has a positive impact on Use Behavior of Airbnb.

It should be noted that the moderating variable Voluntariness, present in the UTAUT, was withdrawn in the UTAUT2 because it was considered that there is no obligation in the use of consumer technology. Voluntariness is perceived as a continuum from absolutely mandatory to absolutely voluntary, in which consumers do not have an organizational mandate, therefore most of their behaviors are completely voluntary, resulting in no variation in the Voluntariness construct. Figure 1 shows the structural model of the research and the proposed hypotheses.

![Figure 1. Research Model](image)

Source: Own elaboration

METHODOLOGY

To achieve the proposed goal of this study, a quantitative approach was adopted through the application of a survey created from the UTAUT2 model (Venkatesh, Thong, & Xu, 2012) to Brazilian individuals who knew the Airbnb platform.
Prior to the data collection, the research instrument was adapted to the context in question through a cross-cultural adjustment, a process that analyzes language and cultural adaptation issues, as recommended in the literature (Beaton et al., 2000). Subsequently, the questionnaires were answered by two groups of likely respondents with distinct profiles, in order to evaluate their understanding and the clarity of the language used. Modifications were made, and a final version was generated.

The final instrument was based on nine constructs: Performance Expectancy, Effort Expectancy, Social Influence, Facilitating Conditions, Hedonic Motivation, Price Value, Habit, Behavioral Intention and Use Behavior (Venkatesh, Thong, & Xu, 2012). Table 1 presents the synthesis of constructs and variables used.

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Items</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Expectancy</td>
<td>*EP1 I find it useful to use Airbnb as an alternative for hosting in my daily life.</td>
<td>Venkatesh, Thong and Xu, (2012)</td>
</tr>
<tr>
<td></td>
<td>EP2 Using Airbnb increases my chances of achieving things that are important to me in hosting.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP3 Using Airbnb helps me accomplish things in hosting more quickly.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP4 Using Airbnb increases my productivity in hosting choices through the internet.</td>
<td></td>
</tr>
<tr>
<td>Effort Expectancy</td>
<td>EE1 Learning how to use Airbnb is easy for me.</td>
<td>Venkatesh, Thong and Xu, (2012)</td>
</tr>
<tr>
<td></td>
<td>EE2 My interaction with Airbnb is clear and understandable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EE3 I find Airbnb easy to use.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EE4 It is easy for me to become skillful at using Airbnb.</td>
<td></td>
</tr>
<tr>
<td>Social Influence</td>
<td>*IS1 People who are important to me think that I should use Airbnb.</td>
<td>Venkatesh, Thong and Xu, (2012)</td>
</tr>
<tr>
<td></td>
<td>IS2 People who influence my behavior think that I should use Airbnb.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IS3 People whose opinions that I value prefer that I use Airbnb.</td>
<td></td>
</tr>
<tr>
<td>Facilitating Conditions</td>
<td>*CF1 I have the resources necessary (access to internet, means of payment) to use Airbnb.</td>
<td>Venkatesh, Thong and Xu, (2012)</td>
</tr>
<tr>
<td></td>
<td>CF2 I have the knowledge necessary to use Airbnb.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*CF3 The use of Airbnb is similar to other Technologies I use.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CF4 I can get help from others when I have difficulties using Airbnb.</td>
<td></td>
</tr>
<tr>
<td>Hedonic Motivations</td>
<td>*MH1 Using Airbnb is fun.</td>
<td>Venkatesh, Thong and Xu, (2012)</td>
</tr>
<tr>
<td></td>
<td>MH2 Using Airbnb is enjoyable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MH3 Using Airbnb is very entertaining.</td>
<td></td>
</tr>
<tr>
<td>Price Value</td>
<td>VA1 Airbnb is reasonably priced.</td>
<td>Venkatesh, Thong and Xu, (2012)</td>
</tr>
<tr>
<td></td>
<td>VA2 Airbnb is good value for the money.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VA3 At the current price, Airbnb provides good value.</td>
<td></td>
</tr>
<tr>
<td>Habit</td>
<td>HA1 The use of Airbnb has become a habit for me.</td>
<td>Venkatesh, Thong and Xu, (2012)</td>
</tr>
<tr>
<td></td>
<td>HA2 I am addicted to using Airbnb.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HA3 I must use Airbnb.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HA4 Using Airbnb has become natural for me.</td>
<td></td>
</tr>
</tbody>
</table>
Behavioral Intention

<table>
<thead>
<tr>
<th></th>
<th>Item</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>I intend to continue using Airbnb in the future.</td>
<td>Venkatesh, Thong and Xu, (2012)</td>
</tr>
<tr>
<td>IC2</td>
<td>I will always try to use Airbnb as an alternative for hosting.</td>
<td></td>
</tr>
<tr>
<td>*IC3</td>
<td>I plan to continue to use Airbnb frequently.</td>
<td></td>
</tr>
</tbody>
</table>

Use Behavior

<table>
<thead>
<tr>
<th></th>
<th>Item</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CU1</td>
<td>I have never used it.</td>
<td>Venkatesh, Thong and Xu, (2012)</td>
</tr>
<tr>
<td>CU2</td>
<td>I rarely use it.</td>
<td></td>
</tr>
<tr>
<td>CU3</td>
<td>I use it every month.</td>
<td></td>
</tr>
<tr>
<td>CU4</td>
<td>I use it twice a month.</td>
<td></td>
</tr>
<tr>
<td>CU5</td>
<td>I use it every week.</td>
<td></td>
</tr>
</tbody>
</table>

Note: *Items excluded

Table 1. Items and Sources of Measurement

It should be noted that as a filter question, the candidates were asked if they had prior knowledge of the Airbnb platform. Those who responded that they did not were excluded from the final sample.

The items were measured using a five-point Likert scale (1 “I totally disagree” and 5 “I totally agree”). In order to analyze Use Behavior in a similar way to the other constructs, it was transformed into an interval variable from 1 to 5.

The questionnaires were made available through the Google Forms platform, from May to October 2017. In order to achieve an adequate sample size, based on parameters estimated from the questionnaire (29 variables, therefore, a minimum of 145 respondents), a criterion proposed by Hair et al. (2009), and to ensure greater variability in the profile of respondents, some of the questionnaires were applied in person.

Thus, the sample was collected by convenience and based on ease of access to the individuals. Through the quota procedure, the criteria used to refine the convenience sampling were: Brazilian users, who knew the Airbnb platform, and were of legal age. 263 valid answers were collected, meeting the criteria of minimum sample size.

Preliminary data were analyzed for the presence of univariate and multivariate outliers. The parameter used to define an outlier was followed, as suggested by Hair et al. (2009), who define outliers as observations with values higher than 4, after dividing the D2 Mahalanobis distance by the degree of freedom. No univariate or multivariate outlier was detected.

For the analysis of data, Structural Equations Modeling (SEM) was used. This is a technique based on the Partial Least Squares Structural Equation Modeling (PLS-SEM) that allows simultaneous analysis of the relationships among constructs and indicators (Hair et al., 2014). The stages and procedures indicated by Hair et al. (2014) were adopted for the application of the PLS-SEM, which divides the evaluation of the path diagram into two stages: evaluation of the measurement model and evaluation of the structural model. The software program SmartPLS was used.

RESULTS

In this section, the results of the data treatment and analysis are presented. Initially, descriptive statistical treatment was performed on the profile data of the respondents who
composed the sample, along with frequency distribution of the sociodemographic variables. Afterwards, Structural Equations Modeling (SEM) was used to validate the research model, as well as verifying the veracity of the hypothesized relations, thus allowing empirical implications for the academic and managerial reality.

SAMPLE CHARACTERIZATION

Based on the sample characterization, the following variables were used: sex, age, marital status and family income, according to Table 2.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>Percent</th>
<th>Variable</th>
<th>Category</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Female</td>
<td>54%</td>
<td>Marital status</td>
<td>Married</td>
<td>37.6%</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>46%</td>
<td></td>
<td>Divorced</td>
<td>2.3%</td>
</tr>
<tr>
<td>Age group</td>
<td>18 to 23 years</td>
<td>23.2%</td>
<td></td>
<td>Separate</td>
<td>0.4%</td>
</tr>
<tr>
<td></td>
<td>24 to 29 years</td>
<td>25.9%</td>
<td></td>
<td>Single</td>
<td>58.9%</td>
</tr>
<tr>
<td></td>
<td>30 to 35 years</td>
<td>19.8%</td>
<td></td>
<td>Widower</td>
<td>0.8%</td>
</tr>
<tr>
<td></td>
<td>36 to 41 years</td>
<td>12.5%</td>
<td>Family Income</td>
<td>Up to R$ 1874.00</td>
<td>11.4%</td>
</tr>
<tr>
<td></td>
<td>42 to 47 years</td>
<td>7.2%</td>
<td>R$ 1874.01 to R$ 3748.00</td>
<td>17.9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48 to 53 years</td>
<td>6.1%</td>
<td>R$ 3748.01 to R$ 9370.00</td>
<td>42.2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>54 to 59 years</td>
<td>4.2%</td>
<td>R$ 9370.01 to R$ 18,740.00</td>
<td>17.5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 60 years</td>
<td>1.1%</td>
<td>R$ 18,740.01 or more</td>
<td>11.0%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100%</td>
<td>Total</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 2. Profile of respondents
Source. Author’s own elaboration

It was observed that 54% of the respondents were female and 46% are male. Most of these individuals were aged between 24 and 29 years (25.9%), followed by 23.2% from 18 to 23 years and 19.8% from 30 to 35 years. Also, 58.9% of the respondents were single and the majority, 42.2%, had a family income of R$ 3748.01 to R$ 9370.00.

EVALUATION OF THE MEASUREMENT MODEL

In the reflective measurement model, which explains how well the theory fits the data, the following analyses are included: simple reliability (Cronbach’s Alpha), Average Variance Extracted (AVE), composite reliability and discriminant validity.

In terms of reliability, the Facilitating Conditions construct presented a value relative to the Cronbach’s Alpha of less than 0.70, the minimum limit suggested in the literature (Hair et al., 2014), therefore it was excluded from the model. All the other constructs obtained values within the expected in this matter. Satisfactory values were also found in the results regarding Composite Reliability, as shown in Table 3.

Convergent validity was measured by means of the Average Variance Extracted (AVE). It should be noted that in order to find high AVE values, two items were excluded from the Facilitating Conditions construct and one item from the constructs Performance Expectancy, Social Influence, and Hedonic Motivation.
All constructs presented values above the suggested minimum of 0.50. The lowest value was obtained in the construct Habit, with 0.686, and the highest value in the construct Social Influence, with 0.914.

<table>
<thead>
<tr>
<th>Construct</th>
<th>Simple Reliability</th>
<th>Compound Reliability</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Behavior</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Facilitating conditions</td>
<td>0.399*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Performance Expectancy</td>
<td>0.812</td>
<td>0.887</td>
<td>0.723</td>
</tr>
<tr>
<td>Effort Expectancy</td>
<td>0.860</td>
<td>0.904</td>
<td>0.702</td>
</tr>
<tr>
<td>Habit</td>
<td>0.851</td>
<td>0.897</td>
<td>0.686</td>
</tr>
<tr>
<td>Social influence</td>
<td>0.900</td>
<td>0.955</td>
<td>0.914</td>
</tr>
<tr>
<td>Behavioral Intention</td>
<td>0.856</td>
<td>0.913</td>
<td>0.777</td>
</tr>
<tr>
<td>Hedonic motivation</td>
<td>0.857</td>
<td>0.933</td>
<td>0.875</td>
</tr>
<tr>
<td>Value</td>
<td>0.899</td>
<td>0.938</td>
<td>0.835</td>
</tr>
</tbody>
</table>

Note: * excluded item

Table 3. Simple and Compound Reliability and Convergent Validity

Source. Smart PSL

For the discriminant validity, the criterion established by Fornell-Larcker was used, which indicates that the square root of the AVE of each construct must be greater than the highest correlation with each construct (Hair; et al, 2014). All constructs were considered adequate.

In addition, discriminant validity was also verified through the Heterotrait-Monotrait ratio of correlations (HTMT) criterion which, like the previous one, aims to determine whether the construct is unique. The HTMT values between the relationships of the constructs must be lower than 0.9 (Hair et al, 2014). In this research, the values remained in the range of 0.062 for the Performance Expectancy construct and 0.669 for the Hedonic Motivation construct. Thereby, all constructs met the condition.

After the assessment of convergent validity tests of the model, evaluation of collinearity between indicators of the same construct and evaluation of significance and relevance of indicators and their respective analyses, the measurement model assumes the form presented in Figure 2.
EVALUATION OF THE STRUCTURAL MODEL

After the process of evaluating the measurement model, the structural model evaluation was carried out, which examines the predictive capacity of the model and the relationships between the constructs (Hair et al., 2014).

In order to analyze the measurement model, the existence of collinearity between the constructs was initially verified through variance values measured with the Variance Inflation Factor (VIF). None of the constructs of the model presented collinearity problems (Hair et al., 2014).

In this regard, the significance and relevance of the relationships in the structural model was evaluated. Table 4 presents the path coefficients between the constructs and their respective significance levels, generated after the application of the PLS algorithm.

<table>
<thead>
<tr>
<th>Relationship between the constructs</th>
<th>Beta coefficient</th>
<th>T Value</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1-Performance Expectancy -> Behavioral Intention</td>
<td>0.269</td>
<td>4.309</td>
<td>1%</td>
</tr>
<tr>
<td>H2-Effort Expectancy -> Behavioral Intention</td>
<td>0.171</td>
<td>3.167</td>
<td>1%</td>
</tr>
<tr>
<td>H3-Social Influence -> Behavioral Intention</td>
<td>0.123</td>
<td>2.388</td>
<td>5%</td>
</tr>
<tr>
<td>H5-Hedonic Motivation -> Behavioral Intention</td>
<td>0.069</td>
<td>1.224</td>
<td>None</td>
</tr>
<tr>
<td>H6-Value -> Behavioral Intention</td>
<td>0.073</td>
<td>1.444</td>
<td>None</td>
</tr>
<tr>
<td>H7-Habit -> Behavioral Intention</td>
<td>0.348</td>
<td>8.025</td>
<td>5%</td>
</tr>
<tr>
<td>H8-Habit -> Use Behavior</td>
<td>0.005</td>
<td>0.062</td>
<td>None</td>
</tr>
<tr>
<td>H9-Intentional Behavior -> Use Behavior</td>
<td>0.053</td>
<td>0.618</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 4. Structural Relationship

Source. Smart PLS Software
Finally, to measure the predictive power of the model, the R² value, known as the Coefficient of Determination, was used to represent the combination of effects of the exogenous (independent) constructs on a particular endogenous (dependent) construct (Hair et al., 2014).

In the Use Behavior construct, it was found an R² value below the value was considered weak, while the R² of the Behavioral Intention construct was considered moderate. The variables that precede the Use Behavior construct explain 0.3% of the construct variance, and the variables that precede the Behavioral Intention construct explain 62.9% of it.

DISCUSSION OF THE RESULTS

Access-based consumption platforms, such as Airbnb, provide an innovative way for consumers to exchange value and modify their travel patterns (Satama, 2014; Tussyadiah, & Pesonen, 2016). The rapid success and increasing popularity of the platform has required surveys that consider, for example, its impact on destinations, loyalty, attitudes and behaviors of residents, providers, and guests (Guttentag, 2015). The purpose of this study was to identify the factors that influence the adoption of Airbnb in the Brazilian context.

Analysis of the results indicated important findings, and four of the eight hypotheses were supported. Performance Expectancy, Effort Expectancy, Social Influence and Habit constructs significantly impacted on Behavioral Intention of using the Airbnb platform, hypotheses H1, H2, H3 and H7 (Table 4). Brazilian respondents of the study believe that the use of Airbnb provides benefits in relation to hosting (Performance Expectancy), and ease of use (Effort Expectancy); they are also influenced by family or friends who have positive opinions about the platform (Social Interaction), and by previous experiences (Habit).

It is interesting to note that the construct Habit, seen as the strongest predictor in relation to Behavioral Intention, does not present a significant relation with Use Behavior (H8). This is contrary to previous research suggesting the direct effect of Habit on Use Behavior (Venkatesh, Thong, & Xu, 2012).

Understood as the extent to which people tend to perform behaviors, that is, the automatic use of certain technology through learning (Limayem, Hirt, & Cheung, 2007). Habit, by positively impacting Behavioral Intention, may mean that previous use or knowledge of the platform influences users to consider it as an option when choosing accommodation. However, when individuals come to make their final choice and actually have a Use Behavior, Habit is no longer a significant factor. This means there may be other factors that precede this behavior.

Some factors, such as the Price Value construct, had a non-significant impact on Behavioral Intention in Airbnb. Although this result contradicts previous works (Hamari, Sjöklint, & Ukkonen 2015; Tussyadiah, 2016), it is similar to what was discovered by Satama (2014). According to the author’s studies, the Price Value construct proved to be non-significant when related to Behavioral Intention, but it obtained an indirect effect in the construct Performance Expectancy. This is based on the logic that consumers who have had a more positive perception of Airbnb’s Price Value are more likely to consider it useful and thus are more likely to use it in the future (Satama, 2014).
Future research in the Brazilian context can be conducted to test this relationship, since previous studies on shared hosting have found that economic benefits and cost savings are important factors for Airbnb’s users (Hamarl, Sjöklint, & Ukkonen 2015; Tussyadiah, 2016).

Also, with non-significant impact was the construct Hedonic Motivation, whereby for Brazilian respondents, the utilitarian aspects of access-based consumption, such as Airbnb, are still the strongest determinant factors of intention to use. Aspects such as pleasure and fun when using the service were not outstanding. Hedonic Motivation was found to be an influential factor in studies conducted with the Airbnb platform in other countries, such as China and Japan (Satama, 2014; Lin; Wang, & Wu, 2017). Thus, as an opportunity for the growth of the platform, it would be interesting to explore ways of making the users’ experience more enjoyable, for example, by developing guides to cities and neighborhoods near the accommodation (Satama, 2014).

As Hawlitschek, Teubner and Gimpel (2016) found, Hedonic Motivation can merge with Social Experience, i.e. the idea that sharing allows for social experience and interaction. But as Tussyadiah (2016) demonstrates, the social benefits of shared hosting experiences will have a negative impact on the behavioral intention of guests staying in non-shared accommodations. That is, certain guests will avoid social interactions (Tussyadiah, 2016). Therefore, the results of this research may also indicate that Brazilian respondent users avoid social interactions when using Airbnb. This aspect could be explored in future research.

Finally, a non-significant relation was obtained between the constructs Behavioral Intention and Use Behavior, with the latter explaining about 0.3% of the behavior related to Airbnb. In this regard, it is important to note that the way in which the construct Use Behavior was originally measured, with a frequency ranging from “never” to “many times a day” (Venkatesh, Thong, & Xu, 2012) may not be adequate for the frequency of Use Behavior in tourism. Trips occur with different objectives, such as business and vacations, which may significantly alter their frequency (Prebensen et al., 2013).

Although this research has made some modifications to ensure a better adjustment to the environment of shared hosting and trips, a scale with a variation from “low use” to “a lot of use” was adopted. However, this scale still may not consider all the peculiarities of the behavior in question, a fact that may have reflected on the effects and relationships found. Therefore, future works should seek better ways of shaping and measuring the construct Use Behavior, especially when it is related to the context of travel and shared hosting.

In general, the variables validated in the model (Performance Expectancy, Effort Expectancy, Social Interaction and Habit) explained the approximately 63% of the construct Behavioral Intention. (Tussiadiah, 2015; Satama 2017). Other factors, therefore, more adapted to the context of the shared hosting platform, can influence this relationship. Satama (2014) and Tussiadiah (2015), for example, identify the impact of the Confidence construct, which can be divided into confidence in mechanism feedback available on the platform, and the quality of the website. As Ert, Fleischer and Magen (2016) point out, the use of shared hosting platforms includes, besides economic risks, the danger of negotiating with strangers. The perception of the latter can influence users’ behavior, causing them to adopt protection strategies (Ert, Fleischer, & Magen, 2016).
Besides the Confidence factor, Satama (2014) also observes the influence of the Materialism factor. Materialism is defined as the consumer behavior of placing higher emphasis on the acquisition of goods than other people. In this regard, consumers involved with Airbnb may reveal high use and situational value, and are usually less materialistic than the general population (Satama, 2014). Future research may contemplate and add these variables to the model in the Brazilian context in order to increase the explanatory power found.

FINAL CONSIDERATIONS

The purpose of this study was to identify the factors involved in the adoption process and intention to use the shared hosting platform Airbnb, in the Brazilian context. Important data such as Habit, Price Value and Hedonic Motivation were found, as well as the need for further studies to better explore the aspects identified.

Despite the growth of the platform, there is still room for its expansion in various parts of the world. Among the 530 responses collected in this study, more than half were referred to individuals who did not know the Airbnb platform. As Tussyadiah (2015) points out, many travelers do not use shared hosting due to lack of information for them to use the system.

One limitation of this study is the nature of the sample, which was obtained by convenience and may not reflect the general population. Another limitation is that it does not consider the effect of sociodemographic factors, such as age and sex, which may be related to the adoption of innovative technologies and new business models. It is suggested that future works be conducted to complete these aspects.

As an academic contribution, this research expands the use of the UTAUT2 model for shared economy and finds, in the Brazilian context of Airbnb, the non-significance of factors such as Hedonic Motivation and Price Value in Behavioral Intention. Thus, future research may consider new variables as an extension of the proposed model, as well as their application to other models of economies. Moreover, it is interesting to qualitatively explore the aspects raised in this study regarding the behavior of Airbnb’s consumers, changes in their travel patterns, accommodation demands, and the creation of new markets.

The empirical contributions of the research point to appropriate points of growth of the platform in the country. Having identified the utilitarian aspects as the most determinant factors of intention to use, the growth of the platform through the creation of forms to make the user experience more enjoyable is possible. In addition, finding non-significant relationships with Hedonic Motivation may indicate that Brazilian respondent users avoid social interactions when using Airbnb, which in turn, modifies the way in which the offers are made.

As Airbnb has gained popularity and has become the most successful shared economy model (Liu, & Mattila, 2017), this work contributes managerially to the understanding of the profile and motivation of the Brazilian user. Knowing the users’ motivations can allow the creation of more personalized experiences, new products and the expansion and promotion of the platform to cities where it is rarely used.
REFERENCES

Bardin, L. (2010). Content analysis. 70 ed. LDA.

Contribution of each author in the elaboration of the article

Juliana Maria Magalhães Christino: Project design, data collection, review.

Thaís Santos Silva: Elaboration of the manuscript, revision.

Erico Aurélio Abreu Cardozo: Data collection, data analysis and review.

Ana Gabrielle Ribeiro Lopes: Data collection.